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Categorification

Categorification is the idea of finding category theoretic analogues
of set theoretic or algebraic structures:

categorification

sets categories
elements objects
functions functors

equations between elements isomorphisms between objects

decategorification

Decategorification is the reverse process (forgetting the extra
structure)



An example from knot theory: Khovanov homology

D a knot diagram with crossings X = {1, . . . , n}
Each S 2 2X encodes a resolution of D

D =

1

2

3

i /2 S

i 2 S

i

{1} {2, 3} {1, 2}

. . .



The Jones polynomial

The Jones polynomial (up to rescaling) has a “state sum formula”:

J(D) =
X

S22X
(�1)|S |q|S |(q + q

�1)j(S)

where j(S) is the number of disjoint circles in the resolution
corresponding to S



Computing the Jones Polynomial
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J(D) = +q0(q + q�1)2 �3q1(q + q�1)1 +3q2(q + q�1)2 �q3(q + q�1)3
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The Khovanov ‘Cube’ Construction
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A ⇠= Z{1}� Z{�1}
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Posets and Hasse Diagrams

A partially ordered set (poset) (P ,) is a set P with a
reflexive, antisymmetric, and transitive relation .
When x  y and x 6= y , we write x < y .
A cover relation in (P ,) is a pair x , y 2 P with x < y such
that there is no z with x < z < y . Write x l y .
A poset is ranked if there is a function rk : P ! N such that
x l y =) rk(y) = rk(x) + 1



Examples of Posets

1 (chains) The set [n] = {1, 2, . . . , n} with the usual relation .
We have 1 l 2 l 3 and so on. [n] is ranked with rk(x) = x .

2 (Boolean lattices) Given a set S , the collection of subsets 2S

of S is a poset with T1  T2 if T1 is contained in T2 (usually
denoted ✓). Given subsets T1 ✓ T2, we have T1 l T2 iff
|T2| = |T1|+ 1. Thus 2S is ranked by cardinality.

3 (face posets of polytopes) The set of faces F(A) of a polytope
A is partially ordered by containment. Given faces F1 ✓ F2, we
have F1 l F2 iff dimF2 = dimF1 + 1. Thus face posets are
ranked by dimension.
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Hasse Diagrams

The Hasse diagram of a finite poset (P ,) is a directed graph
with a node for each x 2 P and a directed edge from x to y (drawn
left to right) iff x l y .

E.g. [4] 2[3] F( )

1 2 3 4

Chains

?
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Face posets of polytopes



Thin Posets

Definition
A ranked poset is thin if every nonempty interval [x , y ] with
rk(y) = rk(x) + 2 is a diamond:

x
a

b
y

E.g. [4] 2[3] F( )

1 2 3 4

Chains
(not thin)

?

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}
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Boolean lattices
(thin)
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Face posets of polytopes
(thin)



Posets as Categories

Any poset (P ,) can be thought of as a category: with
objects P and a unique morphism from x to y iff x  y .
A functor on a poset is then a labeling of nodes and edges of
the Hasse diagram by objects and morphisms so that
compositions along any two co-initial, co-terminal paths
coincide.
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Functors on Thin Posets Yield Homology Theories

Let P be a thin poset, A an abelian category, and

� : {edges in Hasse diagram} ! {+1,�1}

an edge coloring making diamonds anticommute.
Given a functor F : P ! A, define a chain complex C

⇤(P ,F ) by

C
k(P ,F ) =

M

rk(x)=k

F (x)

d
k : C k(P ,F ) ! C

k+1(P ,F ) d
k =

X

xly
rk(x)=k

�(x l y)F (x l y)

Since F commutes on diamonds, it follows that d2 = 0. Denote the
homology by H(P ,F ).



Thin Poset Homology Pictorially
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Thin poset homology and categorification

Suppose we are interested in categorifying a ring element
g 2 R , with a formula

g =
X

x2P
(�1)rk(x)f (x)

where P is a thin poset, f : P ! R .
Suppose that the monoidal abelian category CR categorifies R

in the sense that
K0(CR) ⇠= R .

If one can construct a functor F : P ! CR with [F (x)] = f (x)
for all x 2 P , then H(P ,F ) categorifies g

X

i2Z
(�1)i [H i (P ,F )] = g



Vandermonde determinants

Given ~s 2 Zn
+, the corresponding generalized Vandermonde

determinant is:

V~s(~x) =

���������

x
s1
1 x

s2
1 · · · x

sn
1

x
s1
2 x

s2
2 · · · x

sn
2

...
... . . . ...

x
s1
n x

s2
n · · · x

sn
n

���������

=
X

⇡2Sn

(�1)inv(⇡)
x
s⇡(1)
1 x

s⇡(2)
2 ... x

s⇡(n)
n

Sn has a thin partial order (Bruhat order)
The Bruhat order is ranked by inv(⇡)



Categorifying the Vandermonde determinant

Given a link diagram L with n crossings, we will construct a
functor

FL : Sn ! A

from the Bruhat order on Sn to an abelian category A such
that [FL(⇡)] = x

s⇡(1)
1 x

s⇡(2)
2 ... x

s⇡(n)
n in the Grothendieck group

K0(A), where si is the number of circles in the resolution of L
corresponding to {1, 2, . . . , i} ✓ [n].
Thus by the previous construction, H(Sn,FL) categorifies the
generalized Vandermonde determinant

VL(~x) = det(x
sj
i ).



The category of colored cobordisms: Cobn

2

Objects: [n]-colored
closed 1-manifolds

Morphisms: color
preserving cobordisms

Let [n] = {1, 2, ..., n}. The category Cob
n
2 has

Objects: closed oriented 1-manifolds with each connected
component given a color from [n]

Morphisms: 2-dimensional oriented manifolds for which each
connected component has monochromatic boundary



For example, let M = ###### and N = ######

is a colored cobordism from M to N, but not



Method for defining FL : Sn ! A

We will define FL as follows:
Define a ‘functor’ GL from Sn to Cob

n
2

Composition law holds only up to ‘stabilization’, i.e. possibly
up to connect summing with an appropriate number of tori

⇡
�

�

�

⇡
�

�

�

Post compose with a functor ZL : Cob
n
2 ! A which acts

invariantly under stabilization



Define GL : Sn ! Cobn

2 on objects

L a link diagram with crossings c1, ..., cn. For ⇡ 2 Sn define

FL(⇡) = L
⇡
1 q L

⇡
2 q ...q L

⇡
n 2 Ob Cobn2

where L
⇡
i the resolution of L corresponding to {1, 2, . . . ,⇡(i)}, and

all components of L⇡i are colored i .

c1

c2

c3

L =
⇡ = 213

FL(⇡) = L
⇡
1 q L

⇡
2 q L

⇡
3



Define GL : Sn ! Cobn

2 on morphisms

If ⇡ l � then K
⇡ = K

⇡
1 q K

⇡
2 q ...q K

⇡
n 2 Ob Cobn2 and

K
� = K

�
1 q K

�
2 q ...q K

�
n 2 Ob Cobn2

differ at exactly two colors. Use connected genus 0 cobordisms on
the colored pieces which differ, and identity (cylinders) on pieces
which do not change

213

231

;

notation:



We have defined a ‘functor’ GD : Sn ! Cobn

2



2D special colored TQFTs

Definition

A 2D TQFT is a symmetric monoidal functor Z : Cob
1
2 ! A

where A is symmetric monoidal abelian
A 2D TQFT F is special if the following condition holds:

F

 !
F

✓ ◆
=

Note that Cob
n
2
⇠= Cob

1
2 ⇥ · · ·⇥ Cob

1
2

A special colored TQFT is a monoidal functor
F : Cob

n
2 ! A which restricts to a special TQFT on each

color (each copy of Cob
1
2).



Apply a Special Colored TQFT
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Form a chain complex
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⌦A⌦3

x3

A⌦2
x1
⌦Ax2⌦A⌦3

x3

Ax1⌦A⌦3
x2
⌦A⌦2

x3

A⌦2
x1

⌦A⌦3
x3
⌦Ax3

A⌦3
x1

⌦Ax2⌦A⌦2
x3

A⌦3
x1
⌦A⌦2

x2
⌦Ax3

�⌦m⌦Id

Id⌦�2m⌦�m2

Id⌦�2⌦m2

�2m⌦�m2⌦Id

Id⌦�⌦m

�2⌦m2⌦Id

�⌦Id⌦m

�2m⌦Id⌦m2�

� � � �

C0(Sn, FL) C1(Sn, FL) C2(Sn, FL) C3(Sn, FL)



A Categorification of the Vandermonde determinant

Theorem (C., 2016)

Let Z be a special colored TQFT, Z : Cob
n
2 ! A, let FL = Z � GL,

and let xi denote [Z (#i )] 2 K0(A). For any link diagram L,
X

i2Z
(�1)i [H i (Sn,FL)] = VL(~x)



Thank you!


