Thin Posets, Homology Theories, and Categorification

Alex Chandler
North Carolina State University

January 22, 2019

Categorification

Categorification is the idea of finding category theoretic analogues of set theoretic or algebraic structures:

categorification	
sets	categories
elements	objects
functions	functors
equations between elements	isomorphisms between objects
decategorification	

Decategorification is the reverse process (forgetting the extra structure)

An example from knot theory: Khovanov homology

- D a knot diagram with crossings $X=\{1, \ldots, n\}$
- Each $S \in 2^{X}$ encodes a resolution of D

The Jones polynomial

The Jones polynomial (up to rescaling) has a "state sum formula":

$$
J(D)=\sum_{S \in 2^{x}}(-1)^{|S|} q^{|S|}\left(q+q^{-1}\right)^{j(S)}
$$

where $j(S)$ is the number of disjoint circles in the resolution corresponding to S

Computing the Jones Polynomial

The Khovanov 'Cube' Construction

Posets and Hasse Diagrams

- A partially ordered set (poset) (P, \leq) is a set P with a reflexive, antisymmetric, and transitive relation \leq.
- When $x \leq y$ and $x \neq y$, we write $x<y$.
- A cover relation in (P, \leq) is a pair $x, y \in P$ with $x<y$ such that there is no z with $x<z<y$. Write $x \lessdot y$.
- A poset is ranked if there is a function $\mathrm{rk}: P \rightarrow \mathbb{N}$ such that $x \lessdot y \Longrightarrow \operatorname{rk}(y)=\operatorname{rk}(x)+1$

Examples of Posets

(1) (chains) The set $[n]=\{1,2, \ldots, n\}$ with the usual relation \leq. We have $1 \lessdot 2 \lessdot 3$ and so on. [n] is ranked with $\operatorname{rk}(x)=x$.
(2) (Boolean lattices) Given a set S, the collection of subsets 2^{S} of S is a poset with $T_{1} \leq T_{2}$ if T_{1} is contained in T_{2} (usually denoted \subseteq). Given subsets $T_{1} \subseteq T_{2}$, we have $T_{1} \lessdot T_{2}$ iff $\left|T_{2}\right|=\left|T_{1}\right|+1$. Thus 2^{S} is ranked by cardinality.
(3) (face posets of polytopes) The set of faces $\mathcal{F}(A)$ of a polytope A is partially ordered by containment. Given faces $F_{1} \subseteq F_{2}$, we have $F_{1} \lessdot F_{2}$ iff $\operatorname{dim} F_{2}=\operatorname{dim} F_{1}+1$. Thus face posets are ranked by dimension.

Hasse Diagrams

The Hasse diagram of a finite poset (P, \leq) is a directed graph with a node for each $x \in P$ and a directed edge from x to y (drawn left to right) iff $x \lessdot y$.
E.g.
[4]

$$
1 \rightarrow 2 \rightarrow 3 \rightarrow 4
$$

Boolean lattices

Face posets of polytopes

Thin Posets

Definition

A ranked poset is thin if every nonempty interval $[x, y]$ with $\mathrm{rk}(y)=\mathrm{rk}(x)+2$ is a diamond:

Chains
(not thin)

Face posets of polytopes (thin)

Posets as Categories

- Any poset (P, \leq) can be thought of as a category: with objects P and a unique morphism from x to y iff $x \leq y$.
- A functor on a poset is then a labeling of nodes and edges of the Hasse diagram by objects and morphisms so that compositions along any two co-initial, co-terminal paths coincide.

Functors on Thin Posets Yield Homology Theories

Let P be a thin poset, \mathcal{A} an abelian category, and
$\phi:\{$ edges in Hasse diagram $\} \rightarrow\{+1,-1\}$
an edge coloring making diamonds anticommute.
Given a functor $F: P \rightarrow \mathcal{A}$, define a chain complex $C^{*}(P, F)$ by

$$
C^{k}(P, F)=\bigoplus_{\mathrm{rk}(x)=k} F(x)
$$

$d^{k}: C^{k}(P, F) \rightarrow C^{k+1}(P, F) \quad d^{k}=\sum_{\substack{x<y \\ \mathrm{rk}(x)=k}} \phi(x \lessdot y) F(x \lessdot y)$
Since F commutes on diamonds, it follows that $d^{2}=0$. Denote the homology by $H(P, F)$.

Thin Poset Homology Pictorially

Thin poset homology and categorification

- Suppose we are interested in categorifying a ring element $g \in R$, with a formula

$$
g=\sum_{x \in P}(-1)^{\mathrm{rk}(x)} f(x)
$$

where P is a thin poset, $f: P \rightarrow R$.

- Suppose that the monoidal abelian category \mathcal{C}_{R} categorifies R in the sense that

$$
K_{0}\left(\mathcal{C}_{R}\right) \cong R
$$

- If one can construct a functor $F: P \rightarrow \mathcal{C}_{R}$ with $[F(x)]=f(x)$ for all $x \in P$, then $H(P, F)$ categorifies g

$$
\sum_{i \in \mathbb{Z}}(-1)^{i}\left[H^{i}(P, F)\right]=g
$$

Vandermonde determinants

Given $\vec{s} \in \mathbb{Z}_{+}^{n}$, the corresponding generalized Vandermonde determinant is:

$$
V_{\vec{s}}(\vec{x})=\left|\begin{array}{cccc}
x_{1}^{s_{1}} & x_{1}^{s_{2}} & \cdots & x_{1}^{s_{n}} \\
x_{2}^{s_{1}} & x_{2}^{s_{2}} & \cdots & x_{2}^{s_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{s_{1}} & x_{n}^{s_{2}} & \cdots & x_{n}^{s_{n}}
\end{array}\right|=\sum_{\pi \in S_{n}}(-1)^{\operatorname{inv}(\pi)} x_{1}^{s_{\pi(1)}} x_{2}^{s_{\pi(2)}} \ldots x_{n}^{s_{\pi(n)}}
$$

- S_{n} has a thin partial order (Bruhat order)
- The Bruhat order is ranked by $\operatorname{inv}(\pi)$

Categorifying the Vandermonde determinant

- Given a link diagram L with n crossings, we will construct a functor

$$
F_{L}: S_{n} \rightarrow \mathcal{A}
$$

from the Bruhat order on S_{n} to an abelian category \mathcal{A} such that $\left[F_{L}(\pi)\right]=x_{1}^{s_{\pi(1)}} x_{2}^{s_{\pi(2)}} \ldots x_{n}^{s_{\pi(n)}}$ in the Grothendieck group $K_{0}(\mathcal{A})$, where s_{i} is the number of circles in the resolution of L corresponding to $\{1,2, \ldots, i\} \subseteq[n]$.

- Thus by the previous construction, $H\left(S_{n}, F_{L}\right)$ categorifies the generalized Vandermonde determinant

$$
V_{L}(\vec{x})=\operatorname{det}\left(x_{i}^{s_{j}}\right)
$$

The category of colored cobordisms: $\mathbf{C o b}_{2}^{n}$

Objects: [n]-colored closed 1-manifolds

Morphisms: color preserving cobordisms

Let $[n]=\{1,2, \ldots, n\}$. The category $\mathbf{C o b}_{2}^{n}$ has

- Objects: closed oriented 1-manifolds with each connected component given a color from [n]
- Morphisms: 2-dimensional oriented manifolds for which each connected component has monochromatic boundary

For example, let $M=000000$ and $N=000000$

is a colored cobordism from M to N, but not

Method for defining $F_{L}: S_{n} \rightarrow \mathcal{A}$

We will define F_{L} as follows:

- Define a 'functor' G_{L} from S_{n} to Cob_{2}^{n}
- Composition law holds only up to 'stabilization', i.e. possibly up to connect summing with an appropriate number of tori

- Post compose with a functor $Z_{L}: \operatorname{Cob}_{2}^{n} \rightarrow \mathcal{A}$ which acts invariantly under stabilization

Define $G_{L}: S_{n} \rightarrow \operatorname{Cob}_{2}^{n}$ on objects

L a link diagram with crossings c_{1}, \ldots, c_{n}. For $\pi \in S_{n}$ define

$$
F_{L}(\pi)=L_{1}^{\pi} \amalg L_{2}^{\pi} \amalg \ldots \amalg L_{n}^{\pi} \in \mathrm{Ob} \operatorname{Cob}_{2}^{n}
$$

where L_{i}^{π} the resolution of L corresponding to $\{1,2, \ldots, \pi(i)\}$, and all components of L_{i}^{π} are colored i.

Define $G_{L}: S_{n} \rightarrow \operatorname{Cob}_{2}^{n}$ on morphisms

If $\pi \lessdot \sigma$ then $K^{\pi}=K_{1}^{\pi} \amalg K_{2}^{\pi} \amalg \ldots \amalg K_{n}^{\pi} \in \mathrm{Ob} \mathrm{Cob}_{2}^{n}$ and

$$
K^{\sigma}=K_{1}^{\sigma} \amalg K_{2}^{\sigma} \amalg \ldots \amalg K_{n}^{\sigma} \in \mathrm{Ob} \operatorname{Cob}_{2}^{\bar{n}}
$$

differ at exactly two colors. Use connected genus 0 cobordisms on the colored pieces which differ, and identity (cylinders) on pieces which do not change

We have defined a 'functor' $G_{D}: S_{n} \rightarrow \operatorname{Cob}_{2}^{n}$

2D special colored TQFTs

Definition

- A 2D TQFT is a symmetric monoidal functor $Z: \operatorname{Cob}_{2}^{1} \rightarrow \mathcal{A}$ where \mathcal{A} is symmetric monoidal abelian
- A 2D TQFT F is special if the following condition holds:

- Note that $\mathbf{C o b}_{2}^{n} \cong \mathbf{C o b}_{2}^{1} \times \cdots \times \operatorname{Cob}_{2}^{1}$
- A special colored TQFT is a monoidal functor $F: \mathrm{Cob}_{2}^{n} \rightarrow \mathcal{A}$ which restricts to a special TQFT on each color (each copy of $\mathbf{C o b}_{2}^{1}$).

Apply a Special Colored TQFT

An anti-commutative diagram in \mathcal{A}

$$
\begin{aligned}
& A_{x_{1}} \otimes A_{x_{2}}^{\otimes 3} \otimes A_{x_{3}}^{\otimes 2} \longrightarrow A_{x_{1}}^{\otimes 3} \otimes A_{x_{2}} \otimes A_{x_{3}}^{\otimes 2} \\
& \Delta^{2} \otimes m^{2} \otimes l d
\end{aligned}
$$

Form a chain complex

A Categorification of the Vandermonde determinant

Theorem (C., 2016)

Let Z be a special colored TQFT, $Z: \operatorname{Cob}_{2}^{n} \rightarrow \mathcal{A}$, let $F_{L}=Z \circ G_{L}$, and let x_{i} denote $\left[Z\left(\bigcirc_{i}\right)\right] \in K_{0}(\mathcal{A})$. For any link diagram L,

$$
\sum_{i \in \mathbb{Z}}(-1)^{i}\left[H^{i}\left(S_{n}, F_{L}\right)\right]=V_{L}(\vec{x})
$$

Thank you!

