Thin Posets, Homology Theories, and Categorification

Alex Chandler

North Carolina State University

January 22, 2019

Categorification

Categorification is the idea of finding category theoretic analogues of set theoretic or algebraic structures:

categorification

sets	categories
elements	objects
functions	functors
equations between elements	isomorphisms between objects

decategorification

Decategorification is the reverse process (forgetting the extra structure)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

An example from knot theory: Khovanov homology

- D a knot diagram with crossings $X = \{1, \ldots, n\}$
- Each $S \in 2^X$ encodes a *resolution* of D

・ロト・日本・日本・日本・ 4日・ 4日・

The Jones polynomial

The Jones polynomial (up to rescaling) has a "state sum formula":

$$J(D) = \sum_{S \in 2^{X}} (-1)^{|S|} q^{|S|} (q + q^{-1})^{j(S)}$$

where j(S) is the number of disjoint circles in the resolution corresponding to S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Computing the Jones Polynomial

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶ ▲ □▶ ▲ □▶

The Khovanov 'Cube' Construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Posets and Hasse Diagrams

- A partially ordered set (poset) (P, ≤) is a set P with a reflexive, antisymmetric, and transitive relation ≤.
- When $x \leq y$ and $x \neq y$, we write x < y.
- A cover relation in (P, ≤) is a pair x, y ∈ P with x < y such that there is no z with x < z < y. Write x < y.
- A poset is **ranked** if there is a function $rk : P \to \mathbb{N}$ such that $x \lessdot y \implies rk(y) = rk(x) + 1$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

Examples of Posets

- (chains) The set $[n] = \{1, 2, ..., n\}$ with the usual relation \leq . We have $1 \leq 2 \leq 3$ and so on. [n] is ranked with rk(x) = x.
- ② (Boolean lattices) Given a set *S*, the collection of subsets 2^S of *S* is a poset with $T_1 \le T_2$ if T_1 is contained in T_2 (usually denoted ⊆). Given subsets $T_1 \subseteq T_2$, we have $T_1 < T_2$ iff $|T_2| = |T_1| + 1$. Thus 2^S is ranked by cardinality.
- ③ (face posets of polytopes) The set of faces $\mathcal{F}(A)$ of a polytope *A* is partially ordered by containment. Given faces $F_1 \subseteq F_2$, we have $F_1 \lt F_2$ iff dim $F_2 = \dim F_1 + 1$. Thus face posets are ranked by dimension.

$$\mathcal{F}\left(\bigwedge^{\bullet}\right) = \left\{ \varnothing, \bigwedge^{\bullet}_{\bullet}, \overset{\bullet}{\bullet}, \overset$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Hasse Diagrams

The Hasse diagram of a finite poset (P, \leq) is a directed graph with a node for each $x \in P$ and a directed edge from x to y (drawn left to right) iff $x \lessdot y$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

Thin Posets

Definition

A ranked poset is **thin** if every nonempty interval [x, y] with rk(y) = rk(x) + 2 is a diamond: bxyaE.g. [4] 2^[3] $\{3\} \longrightarrow \{2,3\}$ \mathcal{F} $\{1,3\} \longrightarrow \{1,2,3\}$ $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ + {2} Ø $\{1\} \longrightarrow \{1,2\}$ Face posets of polytopes (thin) Chains (not thin) Boolean lattices (thin)

(日) (四) (里) (里)

590

Ē

Posets as Categories

- Any poset (P, ≤) can be thought of as a category: with objects P and a unique morphism from x to y iff x ≤ y.
- A functor on a poset is then a labeling of nodes and edges of the Hasse diagram by objects and morphisms so that compositions along any two co-initial, co-terminal paths coincide.

< □ > < □ > < □ > < □ >

э

-

590

Functors on Thin Posets Yield Homology Theories

Let P be a thin poset, \mathcal{A} an abelian category, and

 $\phi: \{ \mathsf{edges} \text{ in Hasse diagram} \} \rightarrow \{+1, -1\}$

an edge coloring making diamonds anticommute. Given a functor $F : P \to A$, define a chain complex $C^*(P, F)$ by

$$C^{k}(P,F) = \bigoplus_{\mathsf{rk}(x)=k} F(x)$$
$$d^{k} : C^{k}(P,F) \to C^{k+1}(P,F) \qquad d^{k} = \sum_{\substack{x \leq y \\ \mathsf{rk}(x)=k}} \phi(x \leq y) F(x \leq y)$$

Since F commutes on diamonds, it follows that $d^2 = 0$. Denote the homology by H(P, F).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Thin Poset Homology Pictorially

・ロト・西ト・西ト・西ト・日 うくぐ

Thin poset homology and categorification

• Suppose we are interested in categorifying a ring element $g \in R$, with a formula

$$g = \sum_{x \in P} (-1)^{\mathsf{rk}(x)} f(x)$$

where P is a thin poset, $f : P \rightarrow R$.

• Suppose that the monoidal abelian category C_R categorifies R in the sense that

$$K_0(\mathcal{C}_R)\cong R.$$

If one can construct a functor F : P → C_R with [F(x)] = f(x) for all x ∈ P, then H(P, F) categorifies g

$$\sum_{i\in\mathbb{Z}}(-1)^i[H^i(P,F)]=g$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♥ ��

Vandermonde determinants

Given $\vec{s} \in \mathbb{Z}_{+}^{n}$, the corresponding generalized Vandermonde determinant is:

$$V_{\vec{s}}(\vec{x}) = \begin{vmatrix} x_1^{s_1} & x_1^{s_2} & \cdots & x_1^{s_n} \\ x_2^{s_1} & x_2^{s_2} & \cdots & x_2^{s_n} \\ \vdots & \vdots & \ddots & \vdots \\ x_n^{s_1} & x_n^{s_2} & \cdots & x_n^{s_n} \end{vmatrix} = \sum_{\pi \in S_n} (-1)^{\operatorname{inv}(\pi)} x_1^{s_{\pi(1)}} x_2^{s_{\pi(2)}} \dots x_n^{s_{\pi(n)}}$$

- S_n has a thin partial order (Bruhat order)
- The Bruhat order is ranked by $inv(\pi)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Categorifying the Vandermonde determinant

• Given a link diagram *L* with *n* crossings, we will construct a functor

$$F_L: S_n \to \mathcal{A}$$

from the Bruhat order on S_n to an abelian category \mathcal{A} such that $[F_L(\pi)] = x_1^{s_{\pi(1)}} x_2^{s_{\pi(2)}} \dots x_n^{s_{\pi(n)}}$ in the Grothendieck group $K_0(\mathcal{A})$, where s_i is the number of circles in the resolution of L corresponding to $\{1, 2, \dots, i\} \subseteq [n]$.

• Thus by the previous construction, $H(S_n, F_L)$ categorifies the generalized Vandermonde determinant

$$V_L(\vec{x}) = \det(x_i^{s_j}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

The category of colored cobordisms: \mathbf{Cob}_2^n

- Objects: closed oriented 1-manifolds with each connected component given a color from [n]
- Morphisms: 2-dimensional oriented manifolds for which each connected component has monochromatic boundary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

is a colored cobordism from M to N, but not

・ロト・日本・日本・日本・日本・日本

Method for defining $F_L : S_n \to \mathcal{A}$

We will define F_L as follows:

- Define a 'functor' G_L from S_n to \mathbf{Cob}_2^n
- Composition law holds only up to 'stabilization', i.e. possibly up to connect summing with an appropriate number of tori

• Post compose with a functor $Z_L : \mathbf{Cob}_2^n \to \mathcal{A}$ which acts invariantly under stabilization

5900

Define $G_L: S_n \to \mathbf{Cob}_2^n$ on objects

L a link diagram with crossings $c_1, ..., c_n$. For $\pi \in S_n$ define

 $F_L(\pi) = L_1^{\pi} \amalg L_2^{\pi} \amalg ... \amalg L_n^{\pi} \in \mathsf{Ob} \operatorname{Cob}_2^n$

where L_i^{π} the resolution of *L* corresponding to $\{1, 2, ..., \pi(i)\}$, and all components of L_i^{π} are colored *i*.

Define $G_L : S_n \to \mathbf{Cob}_2^n$ on morphisms

If $\pi \lessdot \sigma$ then $K^{\pi} = K_{1}^{\pi} \amalg K_{2}^{\pi} \amalg ... \amalg K_{n}^{\pi} \in Ob \ Cob_{2}^{n}$ and $K^{\sigma} = K_{1}^{\sigma} \amalg K_{2}^{\sigma} \amalg ... \amalg K_{n}^{\sigma} \in Ob \ Cob_{2}^{n}$

differ at exactly two colors. Use connected genus 0 cobordisms on the colored pieces which differ, and identity (cylinders) on pieces which do not change

We have defined a 'functor' $G_D : S_n \rightarrow \mathbf{Cob}_2^n$

・ロト・日本・山下・ 山下・ 山下・ 山下・

2D special colored TQFTs

Definition

- A 2D TQFT is a symmetric monoidal functor $Z : \mathbf{Cob}_2^1 \to \mathcal{A}$ where \mathcal{A} is symmetric monoidal abelian
- A 2D TQFT F is **special** if the following condition holds:

$$F\left(\bigcirc \bigcirc \right) = F\left(\bigcirc \right)$$

- Note that $\mathbf{Cob}_2^n \cong \mathbf{Cob}_2^1 \times \cdots \times \mathbf{Cob}_2^1$
- A special colored TQFT is a monoidal functor
 F : Cobⁿ₂ → A which restricts to a special TQFT on each color (each copy of Cob¹₂).

4 ロ ト 4 団 ト 4 目 ト 4 目 ・ 9 4 で

Apply a Special Colored TQFT

Form a chain complex

・ロト ・ 日 ・ ・ 山 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

A Categorification of the Vandermonde determinant

Theorem (C., 2016)

Let Z be a special colored TQFT, $Z : \mathbf{Cob}_2^n \to \mathcal{A}$, let $F_L = Z \circ G_L$, and let x_i denote $[Z(\bigcirc_i)] \in K_0(\mathcal{A})$. For any link diagram L,

$$\sum_{i\in\mathbb{Z}}(-1)^{i}[H^{i}(S_{n},F_{L})]=V_{L}(\vec{x})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Thank you!