▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thin Posets and Diamond Transitivity

Alex Chandler joint work with Ben Hollering and Stephen Lacina

NCSU

November 3, 2018

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うへつ

Functors on Thin Posets

Partially Ordered Sets (Posets)

- A partially ordered set (poset) (*P*, ≤) is a set *P* with a reflexive, antisymmetric, and transitive relation ≤.
- When $x \le y$ and $x \ne y$, we write x < y.
- A cover relation in (P, ≤) is a pair x, y ∈ P with x < y such that there is no z with x < z < y. Write x < y.
- A poset is **ranked** if there is a function $\mathsf{rk} : P \to \mathbb{N}$ such that $x < y \implies \mathsf{rk}(y) = \mathsf{rk}(x) + 1$

Functors on Thin Posets

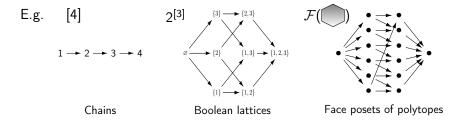
Functors on Posets

0000

Examples of Posets

- (chains) The set $[n] = \{1, 2, ..., n\}$ with the usual relation \leq . We have $1 \leq 2 \leq 3$ and so on. [n] is ranked with rk(x) = x.
- ② (Boolean lattices) Given a set *S*, the collection of subsets 2^S of *S* is a poset with $T_1 \le T_2$ if T_1 is contained in T_2 (usually denoted ⊆). Given subsets $T_1 \subseteq T_2$, we have $T_1 < T_2$ iff $|T_2| = |T_1| + 1$. Thus 2^S is ranked by cardinality.
- **3** (face posets of polytopes) The set of faces $\mathcal{F}(A)$ of a polytope A is partially ordered by containment. Given faces $F_1 \subseteq F_2$, we have $F_1 \lt F_2$ iff dim $F_2 = \dim F_1 + 1$. Thus face posets are ranked by dimension.

The **Hasse diagram** of a finite poset (P, \leq) is a directed graph with a node for each $x \in P$ and a directed edge from x to y (drawn left to right) iff x < y.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition

A ranked poset is **thin** if every nonempty interval [x, y] with rk(y) = rk(x) + 2 is a diamond: xa E.g. [4] 2[3] → {2,3} $\{1,3\} \longrightarrow \{1,2,3\}$ $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ ► {2} ø $\{1\} \longrightarrow \{1, 2\}$ **Boolean** lattices Face posets of polytopes Chains (not thin) (thin) (thin) イロト イポト イヨト イヨト ≣ •ΩQ(~

Categories and Functors

A category consists of

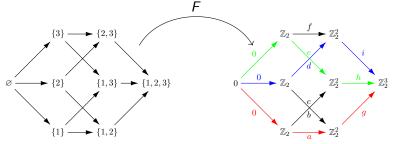
- a class of objects
- for any objects A, B, a class of morphisms Mor(A, B)
- a way to '**compose**' morphisms, and identity morphisms w.r.t. this composition

Category	Objects	Morphisms
k-Vect	\Bbbk -vector spaces	\Bbbk -linear maps
Тор	topological spaces	continuous maps
Cob _n	closed <i>n</i> -manifolds	compact $n + 1$ -manifolds w/ bdry

A functor $F : C \to D$ between categories C and D sends objects in C to objects in D, morphisms in C to morphisms in D, and preserves compositions and identity morphisms.

Posets as Categories

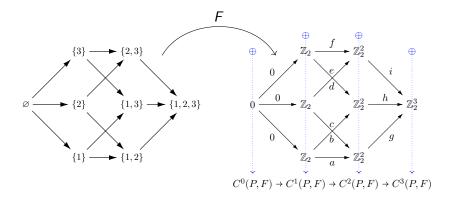
- Any poset (P, ≤) can be thought of as a category: with objects P and a unique morphism from x to y iff x ≤ y.
- A functor on a poset is then a labeling of nodes and edges of the Hasse diagram by objects and morphisms so that compositions along any two co-initial, co-terminal paths coincide.



▲ロト ▲掃 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 오 ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

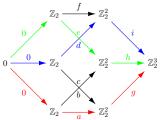
Functors on Thin Posets Yield Homology Theories



E.g. Khovanov homology, simplicial homology, Morse homology, chromatic homology, etc...

Constructing Functors on Thin Posets

To construct a functor on a poset, we begin by labeling nodes by objects of a category and directed edges by morphisms. We then have to check whether compositions along co-initial, co-terminal paths coincide.

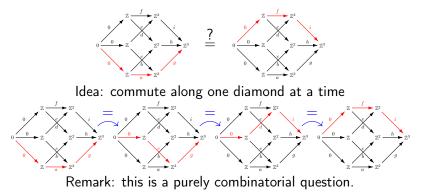


Question

Let P be a thin poset. To construct a functor on P, is it enough for morphisms to commute just on diamonds?

Constructing Functors on Thin Posets

I.e. Suppose we have a labeling of Hasse diagram and we know morphisms commute on diamonds. Can we use this to show morphisms commute on longer paths?



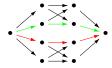
Definition

Say a thin poset P is **diamond transitive** if the answer to the previous question is yes.

Question

Are all thin posets diamond transitive?

No! Counter example:



i.e. pinch two thin posets together of rk ≥ 3

Question

Is this the only type of obstruction?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うへつ

Question: Which thin posets are diamond transitive?

Theorem (C., Hollering, Lacina 2018)

The following types of posets are diamond transitive:

- Face posets of simplicial complexes (in particular Boolean lattices)
- Face posets of polytopal complexes (in particular face posets of polytopes)
- **3** Thin shellable posets

・ロト ・得ト ・ヨト ・ヨト

Sac

Question: Which thin posets are diamond transitive?

Conjecture (C., Hollering, Lacina)

Let P be a thin poset with a unique minimal element $\hat{0}$. Then P is diamond transitive if and only if P is isomorphic to the face poset of a regular CW complex.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you!