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Abstract

We continue the work of Khovanov and Sazdanovic in [1] categorifying certain families of orthogonal
polynomials. Similar to their categorification of Hermite and Chebyshev polynomials, in this paper
Laguerre polynomials are lifted to modules over a diagrammatic algebra. Expressions for Laguerre
polynomials in terms of the monomial basis become projective resolutions of modules which correspond
to Laguerre polynomials, and the inverse relation becomes a filtration of modules.

1 Introduction

In [1], and a pair of unpublished sequels, Khovanov and Sazdanović provide a framework for categorifying
orthogonal polynomials. Given a family {fn(x)}n∈N ⊆ Z[x] of polynomials orthogonal with respect to the
inner product (·, ·). The goal is to realize Z[x] as the Grothendieck group of some category. Monomials
xn should lift to indecomposable objects Pn in such a way that (xn, xm) = dim Hom(Pn, Pm). This is
accomplished by looking at a category of modules over a diagrammatic algebra A, that is, a k-algebra with
a k-basis of planar (n,m)-diagrams, where by a planar (n,m)-diagram, we will mean (somewhat vaguely) a
subset of [0, 1]×R consisting of n points on the line x = 0, m points on the line x = 1, and some collection of
curves attached to the points. Multiplication in a diagrammatic algebra is done by concatenating compatible
diagrams and setting incompatible products to 0. Exactly which diagrams are in the basis will be specified
in each of the different choices for orthogonal polynomials. Generally, diagrammatics should be chosen so
that there is a unique idempotent (n, n)-diagram, which we can denote 1n, since in this case we can define
Pn = A1n and this gives a family of projective indecomposables for which Hom(Pn, Pm) has a basis of (n,m)-
diagrams. Thus under this setup, we should choose diagrammatics for which the number of (n,m)-diagrams
is equal to (xn, xm).

Depending on the choice of polynomials/diagrammatics, we will need to choose which modules to include
in our category. Under certain conditions (for instance if A is Noetherian), one can show that any finitely
generated projective A-module decomposes uniquely as a direct sum of Pn’s and thus the Grothendieck
group of the category of finitely generated projective A-modules is isomorphic to Z[x] via [Pn] 7→ xn. One
can additionally define a monoidal structure on this category to get an isomorphism of rings.

To categorify the polynomials {fn(x)}n∈N ⊆ Z[x] we search for modules Mn admitting some relation with
the modules Pk (for example, a projective resolution or filtration) which descends to a closed formula for fn
in terms of monomials xk in the Grothendieck group K0(A-pmod) ∼= Z[x]. This could be accomplished in a
trivial way by perhaps taking appropriate direct sums of the Pk, but instead we search for modules Mn with
a geometric relation to the Pk’s via diagrammatics.

AC: state main results here
In Section 2 we give a review of Khovanov and Sazdanovic’s slarc algebra which leads to a categorification

of Z[x] and polynomials (x − 1)n. Section 3 describes the unpublished sequel to [1] where they categorify
Hermite and Chebyshev polynomials. In Section 4 we show how to modify the general setup given by
Khovanov and Sazdanovic in a way which can be used to categorify exponential polynomials (polynomials
in the variable xn

n! , and in particular, Laguerre polynomials. In Z[x] the product xnxm = xn+m is easily

categorified (see sections 2 and 3) but in the exponential polynomial ring, the product xn

n!
xm

m! =
(
n+m
n

)
xn+m

(n+m)!

is more complicated. We show a way to categorify this product in Section 6.
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2 Slarcs and a Categorification of the Polynomial Ring Z[x]
In this section, we give an outline of Khovanov and Sazdanovic’s categorification [1] of Z[x]. The first
ingredient in their categorification is a diagrammatic algebra A−.

Definition 2.1. An (n,m)-slarc diagram is an isotopy class of 1-dimensional submanifolds of [0, 1]×R with

1. n boundary points at x = 0 and m boundary points at x = 1,

2. well defined slope at each point,

3. every connected component has at least one boundary point on {0, 1} ×R, and all boundary points are
on {0, 1} × R.

Connected components with two boundary points are called long arcs (or larcs) and connected components
with only one boundary point are called short arcs (or sarcs). The number of larcs in a diagram is called the
width.

•

•

•

•

•

•

•

•

•larc

sarc
(5, 4)-slarc diagram

Width=3

Figure 1: An example of a (5, 4)-slarc diagram.

See figure 1 for an example of a slarc diagram. Let Bn m denote the set of all (n,m)-slarc diagrams,
and let B =

∐
n,m≥0 Bn m. Elements of B will typically be denoted by lower case letters a, b, c, d, e, ... early

in the alphabet. Let A− denote the k-vector space with basis B. Define a product on A− by letting a · b
be the horizontal concatenation of a and b if the number of right endpoints of a is equal to the number of
left endpoints of b, or zero otherwise. Call A− the slarc algebra. The diagram 1n ∈ Bn n consisting of n
larcs is an idempotent in A− and the family {1n | n ∈ N} is mutually orthogonal, endowing A− with the
structure of an idempotented algebra: A− =

⊕
n,m≥0 1mA

−1n. The idempotents A− serve as a substitute

for a multiplicative identity element. Consider the category A−-pmod of projective finitely generated left
A−-modules. We will be interested in the indecomposable projective modules Pn = A−1n. One can show
that Hom(Pn, Pm) is generated by slarc diagrams with n left and m right endpoints, and thus

dim Hom(Pn, Pm) =

(
n+m

n

)
. (1)

We will also need the standard module Mn, defined as the quotient of Pn by the submodule consisting of all
diagrams in Pn with at least one right sarc.

Definition 2.2. The split Grothendieck group of an abelian category A is the abelian group K0(A) generated
by symbols [M ] for objects M ∈ A modulo the relations [A] = [B] + [C] whenever A ∼= B ⊕ C in A.

The following is proved in [1]:

Theorem 2.3. For any field k,

1. Any object P in A−-pmod is isomorphic to a direct sum P ∼= ⊕n∈NP ann and the an are invariants of
P .
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2. K0(A−-pmod) ∼= Z[x] via [Pn] 7→ xn.

3. Any simple A−-module is isomorphic to the one dimensional module Ln = k1n on which any element
of B other than 1n acts by zero.

4. Pn has a filtration
Pn = Pn(≤ n) ⊇ Pn(≤ n− 1) ⊇ · · · ⊇ Pn(≤ 0) = 0

where Pn(≤ m) is spanned by diagrams in Bn of width at most m and subsequent quotients Pn(≤
m)Pn(≤ m− 1) are isomorphic to

(
n
m

)
copies of the standard module Mm.

5. Mn has a resolution

0 P
(n
n)

0 . . . P
(n
m)
n−m . . . P

(n
1)

n−1 P
(n
0)

n Mn 0

in which each arrow consists of a matrix of diagrams, each diagram having exactly one sarc.

AC: can turn all A− into A
In the Grothendieck group K0(A−-pmod), parts 4 and 5 in Theorem 2.3 yield relations:

[Pn] =
∑
m≥0

(
n

m

)
[Mm], (2)

and

[Mn] =
∑
m≥0

(−1)n+m
(
n

m

)
[Pm]. (3)

In terms of the isomorphism K0(A−) ∼= Z[x] sending [Pn] 7→ xn, equation (3) says

[Mn] =
∑
m≥0

(−1)n+m
(
n

m

)
xm = (x− 1)n,

and equation (2) gives the inverse relation

xn =
∑
m≥0

(
n

m

)
(x− 1)m.

AC: However, in this example, there is no inner product and the polynomials (x− 1)n are not orthogonal in
any sense (are they?).

AC: Talk about BGG duality
AC: What about MacDonald polynomials?

3 Categorified Hermite and Chebyshev Polynomials

In this section we recall the work of Khovanov and Sazdanović in categorifying the Chebyshev and Her-
mite polynomials. This will help to set up some notation and get a flavor for how these diagrammatic
categorifications work for orthogonal polynomials.

3.1 Chebyshev Polynomials

The Chebyshev polynomials (of the second kind) are defined on the interval (−1, 1) and are orthogonal with

respect to the inner product (f, g) =
∫ 1

−1 f(x)g(x)
√

1− x2dx. We consider the rescaled version Un(x) which

forms an orthonormal set on the interval (−2, 2) with the inner product (f, g) = 1
2π

∫ 2

−2 f(x)g(x)
√

1− 4x2dx.

For this inner product we have (xn, xm) = Cn+m
2

if n+m is even and 0 otherwise, where Ck is the kth catalan
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Figure 2: An example of an (n,m)-Chebyshev diagram

number. Thus (xn, xm) is the number of non-crossing matchings of n dots located at x = 0 and m dots
located at x = 1. One finds the explicit formula

Un(x) =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
xn−2k. (4)

Definition 3.1. An (n,m)-Chebyshev diagram is an isotopy class of planar diagrams D in the strip [0, 1]×
R ⊆ R2 with:

1. n vertices on the line x = 0

2. m vertices on the line x = 1

3. Each vertex is the endpoint of an arc in D

4. Arcs in D are only allowed to begin and end at one of the n+m vertices in {0, 1} × R

5. Arcs beginning at x = 0 and ending at x = 1 (call these through arcs) must have well defined slope
everywhere

6. Arcs beginning and ending at the same x value (call these returns) have exactly one point with undefined
slope

7. Arcs have no self intersections

8. No two distinct arcs intersect

9. Only isotopies preserving the above conditions are allowed

AC: need a unified language for the three diagrammatic definitions (slarc, chebyshev, hermite)
Let BCn m denote the set of all (n,m)-Chebyshev diagrams, and BCm =

∐
n∈N BCn m. Let k be a field, let

ACn m be the k-vector space with basis BCn m, and define

AC =
⊕
n,m≥0

ACn m.

Endow AC with a non-unital algebra structure by defining multiplication as follows:

• Given x ∈ BCn m and y ∈ BCm ` , define the product xy ∈ BCn ` by concatenating horizontally. If the
product xy defined in this way yields a diagram which does not satisfy all conditions in Definition 3.2,
set xy = 0.

• Given x ∈ BCn m and y ∈ BCk ` with m 6= k, set xy = 0.

• Extend to a multiplication on AC by extending linearly from the action on the basis elements.
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The algebra AC has a family of mutually orthogonal idempotent elements {1n}n∈N where 1n is the unique
element of BCn n with no crossings. Define Pn = AC1n. The modules {Pn}n∈N are projective and locally
finite dimensional (meaning 1mPn is finite dimensional for any m ≥ 0). Let AC-plfd denote the category
of projective locally finite dimensional AC-modules. Any object in AC-plfd is isomorphic to a finite direct
sum of Pn’s and the Grothendieck group K0(AC-plfd) is free abelian with basis {[Pn]}n∈N, and therefore
K0(AC-plfd) ∼= Z[x] via the map [Pn] 7→ xn. Let C(AC-plfd) denote the category of chain complexes over
AC-plfd. There is a canonical isomorphism K0(C(AC-plfd)) ∼= K0(AC-plfd) by sending the symbol of a
complex to its Euler characteristic [X] 7→

∑
i∈Z(−1)i[Xi]].

AC: maybe these should be MC
n ? Let Mn denote the quotient of Pn by the submodule spanned by

diagrams with n right endpoints and at least one right return. Let Pn(≤ w) denote the submodule of Pn
generated by diagrams in Pn of width less than or equal to w, for w ≥ 0. Then Pn has a filtration

Pn = Pn(≤ n) ⊇ Pn(≤ n− 2) ⊇ · · · ⊇ Pn(≤ n− 2k) ⊇ · · · ⊇ Pn(≤ n− 2bn/2c)

with quotients

Pn(≤ n− 2k)/Pn(≤ n− 2(k + 1)) ∼= M
∼
Xn−2k,n
n−2k ,

where
∼
Xn−2k, n denotes the collection of diagrams in BCn n+2k without left returns. Note that the cardinality

of
∼
Xn−2k, n is n+1

n+k+1

(
n+2k
k

)
. In the Grothendieck group G0(AC-lfd) this filtration yields a relation:

[Pn] =

bn/2c∑
k=0

n+ 1

n+ k + 1

(
n+ 2k

k

)
[Mn−2k].

One can also construct a projective resolution of Mn by Pk’s:

0 . . . P
(n−k

k )
n−2k . . . Pn−1n−2 Pn Mn 0

yielding the relation

[Mn] =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
[Pn−2k] (5)

in the Grothendieck group. Under the identification of [Pn] with xn, the relation (5) shows that [Mn] can
be identified with the Chebyshev polynomial (compare with (4)).

3.2 Hermite Polynomials

The Hermite polynomials are defined on the interval (−∞,∞) and are orthogonal with respect to the inner

product (f, g) = 1√
2π

∫∞
−∞ f(x)g(x)e−

x2

2 dx. For this inner product we have, (xn, xm) = (n+m− 1)!! when

n+m is even and is equal to 0 otherwise. Thus (xn, xm) is counted by the number of perfect pairings of an
(n+m)-element set.

Definition 3.2. An (n,m)-Hermite diagram is an isotopy class of planar diagrams D in the strip [0, 1]×R ⊆
R2 with:

1. n vertices on the line x = 0

2. m vertices on the line x = 1

3. Each vertex is the endpoint of an arc in D

4. Arcs in D are only allowed to begin and end at one of the n+m vertices in {0, 1} × R

5. Arcs beginning at x = 0 and ending at x = 1 (call these through arcs) must have well defined slope
everywhere
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Figure 3: An example of an (n,m)-Hermite diagram

6. Arcs beginning and ending at the same x value (call these returns) have exactly one point with undefined
slope

7. Arcs have no self intersections

8. Each pair of arcs has at most one intersection

9. Only isotopies preserving the above conditions are allowed

Let BHn m denote the set of all (n,m)-Hermite diagrams, and BHm =
∐
n∈N BHn m. Let k be a field, let AHn m

be the k-vector space with basis BHn m, and define

AH =
⊕
n,m≥0

AHn m.

Endow AH with a non-unital algebra structure by defining multiplication as follows:

• Given x ∈ BHn m and y ∈ BHm ` , define the product xy ∈ BHn ` by concatenating horizontally. If the
product xy defined in this way yields a diagram which does not satisfy all conditions in Definition 3.2,
set xy = 0.

• Given x ∈ BHn m and y ∈ BHk ` with m 6= k, set xy = 0.

• Extend to a multiplication on AH by extending linearly from the action on the basis elements.

The algebra AH has a family of mutually orthogonal idempotent elements {1n}n∈N where 1n is the unique
element of BHn n with no crossings. Define Pn = A1n. The modules {Pn}n∈N are projective and locally
finite dimensional (meaning 1mPn is finite dimensional for any m ≥ 0). Let AH -plfd denote the category
of projective locally finite dimensional AH -modules. Any object in AH -plfd is isomorphic to a finite direct
sum of Pn’s and the Grothendieck group K0(AH -plfd) is free abelian with basis {[Pn]}n∈N, and therefore
K0(AH -plfd) ∼= Z[x] via the map [Pn] 7→ xn. Let C(AH -plfd) denote the category of chain complexes over
AH -plfd. There is a canonical isomorphism K0(C(AH -plfd)) ∼= K0(AH -plfd) by sending the symbol of a
complex to its Euler characteristic [X] 7→

∑
i∈Z(−1)i[Xi]].

Let J be the ideal in A spanned by diagrams with at least one right return. For n ∈ N define the

big standard module
∼
Mn as the quotient of Pn by the ideal in Pn spanned by diagrams with at least one

right return. The big standard modules
∼
Mn have a basis of diagrams in Bn with no right returns. The

standard modules Mn are defined as the quotient of
∼
Mn by the ideal spanned by diagrams with at least one

intersection among through arcs, so Mn has a basis of diagrams in Pn with no right returns and no crossings
among through arcs.

There is a filtration of
∼
Mn by submodules

∼
M

(m)

n spanned by diagrams d with `(d) ≥ m for m ∈
{0, 1, . . . ,

(
n
2

)
} where `(d) is the length of the permutation associated to the through arcs of d:

∼
Mn =

∼
M

(0)

n ⊇
∼
M

(1)

n ⊇ · · · ⊇
∼
M

((n
2))

n = 0.
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Each quotient
∼
M

(i)

n /
∼
M

(i+1)

n is isomorphic to a direct sum of j copies of Mn where j is the number of

permutations of length i. Thus in K0(AH -lfd) we have the relation [
∼
Mn] = n![Mn].

There is another useful filtration, this time of Pn. We write

Pn = Pn(n) ⊇ Pn(n− 2) ⊇ Pn(n− 4) ⊇ . . .

where Pn(n−2k) is the submodule of Pn spanned by diagrams in Bn with at most n−2k through arcs. One
can show that the quotient Pn(n − 2k)/Pn(n − 2k − 2) is isomorphic to a direct sum of un,k = n!

2kk!(n−2k)!

copies of
∼
Mn−2k so in the Grothendeick group K0(AH -lfd) we find the relation

[Pn] =

n
2∑

k=0

n!

2kk!(n− 2k)!
[
∼
Mn−2k]. (6)

There is also a projective resolution of the big standard module
∼
Mn:

P0 P2 . . . P
un,k

n−2k . . . P
un,1

n−2 Pn
∼
Mn

which yields the relation

[
∼
Mn] =

bn/2c∑
k=0

(−1)kun,k[Pn−2k] (7)

in K0(AH -lfd). Under the identification of [Pn] with xn, equation (7) tells us that [
∼
Mn] = Hn(x), the

nth Hermite polynomial. Equation 6 expresses a formula for xn in terms of the Hermite polynomial basis.

4 Laguerre Polynomials

The Laguerre polynomial Ln(x) is defined by applying the Gram Schmidt process to the standard basis
{1, x, x2, ...} of Q[x] with respect to the inner product

(f, g) =

∫ ∞
0

f(x)g(x)e−xdx. (8)

We find that

Ln(x) =
∑
m≥0

(−1)m
(
n

m

)
xm

m!
. (9)

Since the coefficient
(
n
m

)
1
m! of xm is not an integer it makes sense to view this as an exponential generating

function with
(
n
m

)
as the coefficient of x

m

m! . Thus to categorify Laguerre polynomials we should first categorify

the ring of exponential polynomials Ze[x] := Z[x
m

m! | m ∈ N] with product

xm

m!
· x

n

n!
=

(
n+m

n

)
xn+m

(n+m)!
. (10)

The inner product (8) acts on basis elements xm

m! ,
xn

n! as follows:(
xm

m!
,
xn

n!

)
=

∫ ∞
0

xm

m!

xn

n!
e−xdx =

(
n+m

n

)
. (11)

5 Categorifying Laguerre Polynomials

AC: get rid of most of this because its now in an earlier section
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Let A− denote the algebra of slarcs defined in [1] and A−-pmod the category of projective finitely
generated left modules over A−. Indecomposable projectives look like Pn = A−1n for idempotents 1n.
Hom(Pn, Pm) is generated by slarc diagrams with n left and m right endpoints. Thus

dim Hom(Pn, Pm) =

(
n+m

n

)
. (12)

In [1] it is shown that K0(A−) ∼= Z[x] via the map [Pn] 7→ xn. As groups, Z[x] ∼= Ze[x] via xn 7→ xn

n! . Thus

the map f : K0(A−) → Ze[x] sending [Pn] 7→ xn

n! is an isomorphism. Notice also that dim Hom(Pn, Pm) =

(x
m

m! ,
xn

n! ) so A−-pmod categorifies the groups structure on Ze[x] with the bilinear form (11).
The standard module Mn is the quotient of Pn by the submodule generated by all diagrams with a

positive number of right sarcs. Mn has a basis consisting of diagrams with no right sarcs. Recall that in
K0(A−) we have the relations

[Pn] =
∑
m≥0

(
n

m

)
[Mm] (13)

and

[Mn] =
∑
m≥0

(−1)n+m
(
n

m

)
[Pm]. (14)

Define the signed standard module
Nn := Mn[n] (15)

where [n] denotes homological degree shift by n. In K0(A−) we have

[Nn] = (−1)n[Mn]. (16)

Identify K0(A−) with Ze[x] via [Pn] = xn

n! . Then in K0(A−),

[Nn] =
∑
m≥0

(−1)m+2n

(
n

m

)
[Pm] (17)

=
∑
m≥0

(−1)m
(
n

m

)
xm

m!
(18)

= Ln(x) (19)

so signed standard modules categorify Laguerre polynomials. We also have

[Pn] =
∑
m≥0

(
n

m

)
[Mm] =

∑
m≥0

(−1)m
(
n

m

)
[Nm] (20)

which translates to
xn

n!
=
∑
m≥0

(−1)m
(
n

m

)
Lm(x), (21)

the usual inverse relation for Laguerre polynomials.

6 Categorifying the Multiplicative Structure on Ze[x]
To categorify the ring structure on Ze[x] we need a monoidal product on A−-pmod which agrees with the
product (10) in Ze[x]. We set

Pn Pk = P
([n+k]

n )
n+k (22)

where
(
[n+k]
n

)
is the set of subsets of [n + k] = {1, 2, ..., n + k} of size n (a module raised to the power of a

set is just the direct sum of copies of that module, one for each element of the set). On occasion we may use
the shorthand notation

Pn Pk = Pn,k
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Now, given α ∈ nBm and β ∈ kBr we define α ⊗ β to be the diagram for β stacked on top of the diagram
for α, as defined in [1]. Then we wish to define

α β : Pn,k → Pm,r. (23)

Instead of thinking of elements of Pn,k as tuples indexed by
(
[n+k]
n

)
, we can think of them as formal linear

combinations of the form ∑
S∈([n+k]

n )

γS · eS (24)

where γS ∈ Pn+k (so the coefficient of eS is the entry of Pn,k corresponding to the subset S). We can use
the Einstein summation convention to simply write

γS · eS =
∑

S∈([n+k]
n )

γS · eS (25)

Diagrammatically, we can depict γ · eS by drawing γ and circling the right endpoints which correspond to

the elements of S. For example, given γ = ∈ P3 and S = {1, 3} we could denote γ · eS by the diagram

Similarly, a morphism in Hom
(
Pn,k, Pm,r

)
can be written as a formal sum

γ(R,P ) · e(R,P ) =
∑

(R,P )∈([n+k]
n )×([m+r]

m )

γ(R,P ) · e(R,P ) (26)

again using the summation convention when convenient. Here, the coefficient of e(R,P ) maps the component
of Pn,k corresponding to the subset R into the component of Pm,r corresponding to the subset P . Diagram-
matically we denote α · e(R,P ) by drawing the diagram α and circling left endpoints corresponding to R and
right endpoints corresponding to P . Concatenation of circled diagrams is zero unless the gluing happens
along the same subset of endpoints. Upon concatenation, we remove the circles on endpoints which have
been glued together. For example,(

+

)
·
(

+ +

)
yields

· + ·

and upon concatenation we get

+

Notice that basis elements of triple products (Pn Pk) P` = P
([n+k]

n )×([n+k+`]
n+k )

n+k+` are also indexed by pairs

(R,S) ∈
(
[n+k]
n

)
×
(
[n+k+`]
n+k

)
of subsets. So we may denote basis elements of (Pn Pk) P` by α · e(R,S)

where α ∈ Pn+k+`. However these pairs (R,S) consist of subsets which are both on the same side of the
diagram. To alleviate some confusion, we let alphabetically adjacent pairs (P,Q), (R,S), (A,B) and (C,D)
denote pairs of subsets on the same side of a diagram, and we let alphabetically nonadjacent pairs (R,P ),
(S,Q), (A,C) and (B,D) denote pairs on opposite sides of a diagram. We will make use of the shorthand
notation

(Pn Pk) P` = P(n,k),`
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Associating the other way we get Pn (Pk P`) = P
([k+`]

k )×([n+k+`]
n )

n+k+` . We will make use of the shorthand
notation

Pn (Pk P`) = Pn,(k,`)

The modules P(n,k),` and Pn,(k,`) are isomorphic, but unfortunately the isomorphism is not natural.
To define the product α β, there is an obvious diagram available, α⊗ β (that is, β stacked on top of

α), which maps Pn+k into Pm+`. Thus it may make sense to define

α β = f(S, T )(α⊗ β) · e(S,T ) (27)

(summation implied) for some function f :
(
[n+k]
n

)
×
(
[m+`]
m

)
→ Z. One obvious choice would be f ≡ 1. This

however would be somewhat trivial since then α β would have rank 1. Thus we make the following more
interesting choice:

Notation 6.1. A larc in a diagram α ∈ nBm will be denoted by the pair (x, y) ∈ [n]× [m] corresponding to
its endpoints. We will write (x, y) ∈ α to denote that (x, y) is a larc in the diagram α, and (R,S) ∈ α to
denote that (R,S) is a slarc subdiagram of α.

Definition 6.2. Given a slarc diagram α ∈ nBm, a slarc subdiagram of α is a pair (R,S) ∈ 2[n]× 2[m] such
that for each larc (x, y) ∈ α we have x ∈ R ⇐⇒ y ∈ S.

Definition 6.3. Define the pairing
〈·
·
〉

: nAm × (2[n] × 2[m]) → nAm to be linear in the top coordinate and
such that for any α ∈ nBm, 〈

α

(R,S)

〉
=

{
α (R,S) ∈ α
0 (R,S) /∈ α

Now, given α ∈ nBm and β ∈ kBr, define

α β =

〈
α⊗ β
(R,S)

〉
e(R,S)

where there is an implied summation over all (R,S) ∈
(
[n+k]
n

)
×
(
[m+r]
m

)
.

This seems to be a natural and interesting choice since this actually depends on the diagram α⊗ β and
the subsets S and T of the endpoints. Unfortunately, this choice does not give an associative product up
to natural isomorphism. There may however still be a chance for this product to work. Our goal is to
define a tensor product of chain complexes of projective A-modules which is associative. But the only chain
complexes we are really interested in multiplying are the projective resolutions P (Mn). In these projective
resolutions, the only maps which appear are sums of elements of the form e(S,S\{x})bin where bin is a slarc
diagram consisting of n larcs and one sarc after the ith larc.

Lemma 6.4. For all n,m ≥ 0,
1n 1m = 1

P
(n+m

n )
n+m

.

Proof. By definition,

1n 1m =

〈
1n ⊗ 1m
(R,S)

〉
e(R,S)

=

〈
1n ⊗ 1m
(R,R)

〉
e(R,R)

since
〈
1n⊗1m
(R,S)

〉
= 0 for R 6= S.

Lemma 6.5. There exist automorphisms φ, ψ for which

ψ ◦
(
(1n 1k) b

)
=
(
1n (1k b)

)
◦ φ

ψ ◦
(
(1n b) 1`

)
=
(
1n (b 1`)

)
◦ φ

ψ ◦
(
(b 1k) 1`

)
=
(
b (1k 1`)

)
◦ φ

where b = ibr or bir. For bin, φ is natural and ψ is not. For ibn, ψ is natural and φ is not.

10



Proof. In the three equations above, we always want n, k, ` to denote the number of larcs in the first, second,
and third diagram respectively. Thus in the first equation, we let b have ` larcs, in the second we let b have
k larcs and in the third we let b have n larcs. We start with the first equation. Note that

(1n 1k) b : P(n,k),` → P(n,k),`+1

and

1n (1k b) : Pn,(k,`) → Pn,(k,`+1)

Given objects a, b, c we think of (ab)c to be the type 1 way to associate and a(bc) to be the type 2 way
to associate. For brevity we define

L1 =

(
[n+ k]

n

)
×
(

[n+ k + `]

n+ k

)
R1 =

(
[n+ k]

n

)
×
(

[n+ k + (`+ 1)]

n+ k

)
L2 =

(
[k + `]

k

)
×
(

[n+ k + `]

n

)
R2 =

(
[k + `+ 1]

k

)
×
(

[n+ k + (`+ 1)]

n

)
To remember what these are, L1 corresponds to the subsets of left endpoints indexing the type 1 way to

associate the product. R2 corresponds to the subsets of right endpoints indexing the type 2 way to associate
the product (similarly for the rest). Notice then, that

P(n,k),` = PL1

n+k+`

P(n,k),`+1 = PR1

n+k+`+1

Pn,(k,`) = PL2

n+k+`

Pn,(k,`+1) = PR2

n+k+`+1

We start by constructing the maps φ and ψ.

P(n,k),` P(n,k),`+1

Pn,(k,`) Pn,(k,`+1)

(1n 1k) b

φ ψ

1n (1k b)

(28)

Note that we will always identify [n] with the first n elements of [n + k + l], [k] with the elements
{n + 1, n + 2, ..., n + k}, [k + l] with the elements {n + 1, n + 1, ..., l} and so on, so for example an element

of
(
[n+k+l]

n

)
×
(
[k+l]
k

)
would consist of a choice of n elements from [n+ k+ l] and a choice of k elements from

{n+ 1, n+ 2, ..., l}. Notice that of course |L1| = |L2| and so there is a bijection φ : L1 → L2.
We now construct an bijection

φ = φn,k,` :

(
[n+ k]

n

)
×
(

[n+ k + l]

n+ k

)
→
(

[k + l]

k

)
×
(

[n+ k + l]

n

)
which takes a pair (R,S) and does the following:

1. Consider the order preserving bijection of [n+k] with T . Let R′ be the image of R under this bijection,
so R′ ⊆ S.

2. Form the pair (R′, S \R′)

11



3. Consider the order preserving bijection of [n + k + l] \ S′ with [k + l]. Let S′ be the image of S \ R′
under this bijection and set φ(R,S) = (S′, R′).

•
•
•
•
•
•
•
•
•

1.

•
•
•
•
•
•
•
•
•

2.

•
•
•
•
•
•
•
•
•

3.

•
•
•
•
•
•
•
•
•

swap

colors

•
•
•
•
•
•
•
•
•

φ induces an isomorphism
φ : PL1

n+k+` → PL2

n+k+`

(which we denote with the same symbol) by permuting components. That is

φ(α · e(R,S)) = α · eφ(R,S)

The definition of ψ will use the bijection φ and will also depend on the diagram b. Note that b has exactly
one right sarc located at position x.

Define
Sub1 = {(R,S, P,Q) ∈ L1 ×R1 | R ∪ P, S ∪Q ∈ 1n ⊗ 1k ⊗ b`i}

and
Sub2 = {(A,B,C,D) ∈ L2 ×R2 | A ∪ C,B ∪D ∈ 1n ⊗ 1k ⊗ b`i}.

That is, Sub1 and Sub2 are the subcollections of L1 × R1 and L2 × R2 respectively consisting of tuples
forming slarc subdiagrams.

Since 1n ⊗ 1k ⊗ b has only one sarc, (R,S) determines (P,Q) in Sub1 and (A,B) determines (C,D) in
Sub2, and so the bijection φ : L1 → L2 determines a bijection φ′ : Sub1 → Sub2. Now, define

Rx1 = {(P,Q) ∈ R1 | x /∈ P ∪Q}

Rx2 = {(C,D) ∈ R2 | x /∈ C ∪D}

Since any (P,Q) ∈ Rx1 determines a slarc subdiagram, and similarly any (C,D) ∈ Rx2 determines a slarc
subdiagram, we have bijections ix1 : Rx1 → Sub1 and ix2 : Rx2 → Sub2. We get the following commutative
diagram, in which any arrow labeled ∼= is a bijection:

R1 R2

Rx1 Rx2

Sub1 Sub2

L1 L2

∃ψ
∼=

ix1∼=

i1

(ix2 )
−1◦φ′◦ix1
∼=

ix2∼=

i2

p1∼=

φ′

∼=

p2∼=

φ

∼=

12



Since we know that |R1| = |R2| and we have a bijection between Rx1 ⊆ R1 and Rx2 ⊆ R2 we can extend
this to a bijection ψ : R1 → R2 for which x ∈ (P,Q) ⇐⇒ x ∈ ψ(P,Q) where x ∈ (P,Q) means x ∈ P
or x ∈ Q. Again we let ψ induce an isomorphism ψ : PR1

n+k+`+1 → PR2

n+k+`+1 by permuting coordinates

according to ψ. That is, ψ(α · e(P,Q)) = α · eψ(P,Q)

Now, to show that (28) commutes, consider the action on a diagram α · e(R,S) ∈ PL1

n+k+`:(
(1n 1k) bi`

)(
α · e(R,S)

)
=

∑
(R,S,P,Q)∈Sub1

α · 1n ⊗ 1k ⊗ bi` · e(P,Q)

= α · 1n ⊗ 1k ⊗ bi` · e(P0,Q0)

where (P0, Q0) = (ix1)−1 ◦ p−11 (R,S) is the only pair for which (R,S, P0, Q0) is a slarc subdiagram.
Then applying the bijection ψ yields

ψ

((
(1n 1k) bi`

)(
α · e(R,S)

))
= α · 1n ⊗ 1k ⊗ bi` · eψ(P0,Q0)

Going the other way, we begin by applying the bijection φ:

φ
(
α · e(R,S)

)
= α · eφ(R,S)

and then apply the 2nd way to associate the product:(
1n (1k bi`)

)(
φ(α · e(R,S))

)
=
(
1n (1k bi`)

)(
α · eφ(R,S)

)
=

∑
(φ(R,S),C,D)∈Sub2

α · 1n ⊗ 1k ⊗ bi` · e(C,D)

= α · 1n ⊗ 1k ⊗ bi` · e(C0,D0)

where (C0, D0) = (ix2)−1 ◦ p−12 ◦ φ(R,S) is the only pair for which (φ(R,S), C0, D0) is a slarc subdiagram.
Then (1n 1k) bi` = 1n (1k bi`) since our commutative diagram of bijections tells us

ψ ◦ (ix1)−1 ◦ p−11 = (ix2)−1 ◦ p−12 ◦ φ.

Nothing in this argument depended on b being in the third position, so a similar argument can be used to
prove the other two equalities. For ibn we would have to first define ψ explicitly and then implicitly define
φ analogously to what we did above.

Let A be the subcategory of A−-pmod generated by objects Pn, morphisms 1n, bin, ibn for all i ≤ n ∈ N
and all possible direct sums and tensor products of these. AC: Maybe not the right approach... What we do
have is a product on A−-pmod which is associative on C so we can define tensor products of the resolutions
P (Mn). However this product on the category of chain complexes may not yield exactly the Grothendieck
ring Ze[x].

Questions: Is A abelian? What is K0(A)? What is K0(C(A))? Are they equal? How does K0(C(A))
relate to K0(C(A−-pmod))?

Lemma 6.6. For any morphisms c, d, e ∈ A, there are automorphisms φ, ψ for which ψ ◦ [c (d e)] =
[(c d) e]◦φ. AC: This is obviously false and not necessary... keeping here for now to recall general idea

Proof. Represent c, d, e in matrix form: c = (ci,j), d = (dk,`), e = (er,s) where each matrix element is 1n, b
i
n,

or ibn (could even be sums of these in general). We have

[(c d) e]a,b =
∑
k

∑
`

(ca,k dk,`) e`,b

and
[c (d e)]a,b =

∑
k

∑
`

ca,k (dk,` e`,b)

13



Conjecture 6.7. The bifunctor on A−-pmod extends to a bifunctor on C(A−-pmod) (in the usual way)
which is associative up to isomorphism on the subcategory C(A), and C(A) contains all of the resolutions
P (Mn) for n ≥ 0.

Proof. Given complexes A,B,C ∈ C(A) we will exhibit an isomorphism A (B C) ∼= (A B) C.
We have

[A (B C)]` =
⊕

i+j+k=`

Ai (Bj Ck)

[(A B) C]` =
⊕

i+j+k=`

(Ai Bj) Ck.

Let d1, d2 denote the differentials on (A B) C and A (B C) respectively. Lemma 6.5 gives auto-
morphisms φi, ψi such that ψi ◦ d1 = d2 ◦ φi. (does it?)

7 Weak Monoidal Structure And Why It’s Enough

AC: “weak monoidal” is already used terminology, need to change this. Also, the product structure here
doesn’t even give a weak monoidal category. It only associates on a certain subcategory C. So this section
is probably not needed, or needs to be modified to be more general.

Given an additive category C with binary products of objects M,N denoted M ⊕ N we can define the
Grothendieck group K0(C) as the abelian group generated by symbols [M ] over all objects M ∈ Ob(C) and
relations [M ] = [N ] + [K] whenever M ∼= N ⊕K in C.
Definition 7.1. A monoidal category is a category C together with a bifunctor : C × C → C which has

1. An object 1 ∈ Ob(C) and natural isomorphisms 1 M ∼= M ∼= M 1

2. Natural isomorphisms (M N) K ∼= M (N K)

3. Coherence conditions (triangle diagram and pentagon diagram)

If (C, ) is an additive monoidal category, K0(C) can be endowed with the structure of a ring by setting
[M ]·[N ] = [M N ]. In this note we consider which of the above properties are necessary for the construction
of Grothendieck ring. We will find that the following is sufficient:

Definition 7.2. A weak monoidal category C is a category with a bifunctor : C × C → C which has

1.′ An object 1 ∈ Ob(C) such that 1 M ∼= M ∼= M 1

2.′ Existence of isomorphisms (M N) K ∼= M (N K)

Proposition 7.3. Given an additive weak monoidal category (C, ), for which is an additive bifunctor,
defining

[M ] · [N ] = [M N ]

endows K0(C) with a unital associative ring structure.

Proof. We already know that K0(C) has the structure of an abelian group via [M ] + [N ] = [M ⊕ N ]. We
must show that the multiplicative structure is unital, associative, and distributive.

1. Unital : Since M 1 ∼= M ∼= 1 M in C we get the relations [1] · [M ] = [M ] = [M ] · [1] in K0(C).

2. Associative: Since (M N) K ∼= M (N K) in C we get

([M ] · [N ]) · [K] = [M N ] · [K]

= [(M N) K]

= [M (N K)]

= [M ] · [N K]

= [M ] · ([N ] · [K])
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3. Distributivity : Since is additive, we have

M (N ⊕K) ∼= (M N)⊕ (M K)

and therefore

[M ] · ([N ] + [K]) = [M ] · [N ⊕K]

= [M (N ⊕K)]

= [(M N)⊕ (M K)]

= [M N ] + [M K]

= ([M ] · [N ]) + ([M ] · [K]).

Similarly, one can show that right multiplication distributes.

Proposition 7.4. (A−-pmod, ) is an additive weak monoidal category and is an additive bifunctor.

Proof. First we notice that P0 acts as a monoidal unit:

P0 Pn = P
([n]

0 )
n = Pn

and similarly

Pn P0 = P
([n]

n )
n = Pn.

We have already seen an isomorphism

(Pn Pm) Pk ∼= Pn (Pm Pk).

is an additive bifunctor since it was defined by additive extension.

When an abelian category A has a monoidal structure (in which (A,B) 7→ A B is additive in each
variable), a monoidal structure is induced on the homotopy category Kb(A) of bounded chain complexes via

P Q =
⊕
i+j=n

P i Qj

with horizontal differentials d 1 and vertical differentials (−1)i d. This also works on the weak level,
however with some additional assumptions.

Proposition 7.5. Suppose that (A, ) is a weak monoidal abelian category, and there are isomorphisms
φ1, . . . , φ6 such that the following holds:

φ1 ◦ 1x (f 1y) = (1x f) 1y ◦ φ2
φ3 ◦ (1x 1y) f = 1x (1y f) ◦ φ4
φ5 ◦ f (1x 1y) = (f 1x) 1y ◦ φ6

for any objects x, y and any morphism f . Then (Kb(A), ) is also weak monoidal using the definition
provided above. Furthermore, we have

K0(Kb(A)) ∼= K0(A)

as rings via the isomorphism

[C] 7→
∑
n∈Z

(−1)nCn.

(probably need some extra conditions such as A is Noetherian and Artinian, and all objects in A are projec-
tive)

Proof. Weak monoidal structure on Kb(A): Associativity holds on the level of chain groups since it holds for
objects in (A, ). We must show that chain maps are the same for (A• B•) C• and A• (B• C•).
This follows exactly from the assumed associativity equations.
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8 Categorifying Products of Laguerre Polynomials

In the identification [Pm] = xm and the corresponding monoidal structure which categorifies xnxm = xn+m

standard modules Mm correspond to polynomials (x− 1)m. The product

(x− 1)m(x− 1)n = (x− 1)n+m

is then categorified by the isomorphism

P (Mm)⊗ P (Mn) ∼= P (Mn+m)

where P (Mn) is the projective resolution P (Mn)→Mn:

0→ P0 → · · · → P
(n
m)
n−m → · · · → P

(n
2)

n−2 → P
(n
1)

n−1 → Pn →Mn

described in proposition 2.9 in [1] where Mn is in homological degree 0. Similarly, the signed standard
module Nn has a projective resolution:

0→ P0 → · · · → P
(n
m)
n−m → · · · → P

(n
2)

n−2 → P
(n
1)

n−1 → Pn →Mn

where Mn is in homological degree n.
We would like a similar story for the identification [Pm] = xm

m! and its corresponding (weak) monoidal
structure. In particular, in [2] it is shown that

Lr(x)Ls(x) =

r+s∑
t=|r−s|

CrstLt(x)

where Crst is the integer

Crst = (−1)p
∑
n

22n−p
(r + s− n)!

(r − n)!(s− n)!(2n− p)!(p− n)!

and where p = r + s− t. Notice that the term (r+s−n)!
(r−n)!(s−n)!(2n−p)!(p−n)! is a multinomial coefficient:

(r + s− n)!

(r − n)!(s− n)!(2n− p)!(p− n)!
=

(
r + s− n

r − n, s− n, 2n− p, p− n

)
.

There are two ways (at least) that we can interpret the product of Laguerre polynomials in this categorified
setting. First we can rewrite the product as

(−1)rLr(x) · (−1)sLs(x) =

r+s∑
t=|r−s|

crst(−1)tLt(x)

where crst = |Crst|. Then, since [Mn] = (−1)nLn(x) we interpret this as

[Mr] · [Ms] =

r+s∑
t=|r−s|

crst[Mt].

This might suggest that there is a filtration

P (Mr) P (Ms) = Fr+s ⊃ Fr+s−1 ⊃ · · · ⊃ F|r−s|
where Fi/Fi−1 is isomorphic to crst copies of our projective resolution of the standard module P (Mt).
Alternatively, we could write

Lr(x) · Ls(x) =

r+s∑
t=|r−s|

crst(−1)r+s+tLt(x),
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viewing Ln(x) instead as coming from the signed standard module [Nn] = Ln(x). Then we find

[Nr] · [Ns] =

r+s∑
t=|r−s|

(−1)r+s+tcrst[Nt].

This may lead us to suspect that there is a resolution

0→ P (N|r−s|)
crs|r−s| · · · → P (Nr+s−1)crs(r+s−1) → P (Nr+s)

crs(r+s) → P (Nr) P (Ns)

9 Associative tensor product

Let us consider the more general tensor product between α ∈ nBm and β ∈ kB` defined by α β :

P
([n+k]

n )
n+k → P

([m+`]
m )

m+`

(α β)(γS)
S∈([n+k]

n ) = (
∑
S

f(S, T )γS · α⊗ β)
T∈([m+`]

m ) (29)

where f :
(
[n+k]
n

)
×
(
[m+`]
m

)
→ Z. In order for to be associative, we must have

f(S, T )f(R,M) = f(φ(S, T ))f(φ(R,M)) (30)

for any (S,R, T,M) ∈
(
[n+k+l]
n+k

)
×
(
[n+k]
n

)
×
(
[n+p+l]
n+p

)
×
(
[n+p]
n

)
.

We now consider the case f(S, T ) = 1 for all S, T which trivially satisfies the above condition. Diagram-
matically, α β is the sum over all possible labelings of α ⊗ β by subsets S ⊆ [n + k], and T ⊆ [m + `]
where |S| = n and |T | = m.
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