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Abstract
In 2004, Helme-Guizon and Rong presented a
categorification of the chromatic polynomial for
graphs using a construction analogous to Kho-
vanov’s categorification of the Jones polynomial.
In this categorification, the chromatic polyno-
mial is upgraded to a homological object and the
deletion contraction rule lifts to a long exact se-
quence. We will explore how Whitney’s broken
circuit theorem manifests itself at the categori-
fied level. This was also done independently by
Sazdanovic̀ and Yip using a different method.

1. The Chromatic Polynomial

Given a graph G = (V, E), a proper n-coloring is
a map c : V → {1, 2, . . . , n} for which no adjacent
vertices get the same ‘color’. Let PG(x) denote the
number of proper x-colorings of G. It turns out that

PG(x) =
∑

S∈2E

(−1)|S|xk(S)

where k(S) is the number of connected components
in the spanning subgraph with edge set S. In par-
ticular, PG(x) is a polynomial. Let the edge set E
have a fixed ordering E = {e1, . . . em}. A broken
circuit in G is C − e where C is a cycle in G and e
is the largest labeled edge in C. Let NBC be the set
of all S ∈ 2E which contain no broken circuits and
let BC = 2E − NBC be its complement.

2. The Broken Circuit Theorem

Whitney used an inductive argument to show that
all contributions from BC cancel in PG(x). That is,

PG(x) =
∑

S∈NBC
(−1)|S|xk(S)

A few proofs of this fact exist. Here we will borrow
an involution i : BC → BC from the proof of Blass
and Sagan (see ‘proof of lemma’ in the right column).

3. The Categorification Method

The graded dimension of a graded vector space V =
⊕i∈ZVi is the power series q dim V = ∑

i∈Z qi dim Vi.
Given a cochain complex C = ⊕i∈ZC i of graded
vector spaces, the graded Euler characteristic is

χq(C) =
∑
i∈Z

(−1)iq dim C i.

If the differential in C preserves grading, then coho-
mology preserves χq. That is, χq(C) = χq(H∗(C)).
The idea is to lift the sum formula for PG(x) to a
chain complex of graded vector spaces whose graded
Euler characteristic is the chromatic polynomial.

4. The Chromatic Cohomology

For purposes of categorification it is convenient to
replace the variable x with 1 + q. Let A denote
the graded Z2-algebra A = Z2[x]/(x2) so q dim A =
1 + q. For S ∈ 2E define AS = A⊗k(S) and set

C(G) = ⊕S∈2EAS C i(G) = ⊕|S|=iAS

The differential on C(G) arises from edges in the
Hasse diagram of 2E and the multiplication in A.
The idea is to multiply tensor factors corresponding
to connected components when the transition from
S to S + e joins two components (see Figure 1).

5. The Picture You Should Have in Mind
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Figure 1: The chromatic chain complex for the 3-cycle C3. Subgraphs containing broken circuits have a dotted outline.

6. The Fundamental Lemma

The set BC ⊂ 2E has a complete acyclic matching
(see Figure 2) for which each matched pair has the
same number of connected components.

7. The Main Theorem

The subcomplex CBC(G) of C(G) generated by
BC ⊂ 2E is acyclic and therefore C(G) has the same
cohomology as CNBC(G) = ⊕S∈NBCAS.

8. The Main Idea
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Figure 2: The broken circuit complex for the graph pictured
above with an acyclic matching as per the Lemma. Here,
‘acyclic’ means that upon reversing all edges in the matching,
there are no directed cycles.

Proof of Lemma. We define an involution i :
BC → BC. Given S ∈ BC, let e be the maximum
over all e ∈ E such that S contains a broken circuit
C − e. Define i(S) to be S + e if e /∈ S or S − e
if e ∈ S. It follows that i(i(S)) = S and thus the
orbits of i form a complete matching M on BC. To
show this is acyclic, it suffices to show there is a lin-
ear extension of BC in which matched edges become
cover relations. For e = (S ⋖T ) ∈ M let d(e) = S.
Fix a total ordering on d(M) = {d(e) | e ∈ M}
by setting U ≤ V if |U | < |V | or if |U | = |V |
and U is lexicographically larger than V (that is,
order ranks by reverse lexicographic order). Fix the
notation M = {(S1 ⋖ T1), . . . (Sn ⋖ Tn)} with the
Si ordered as indicated above. One can check that
S1, T1, S2, T2, . . . , Sn, Tn is the desired linear exten-
sion. Thus M is indeed acyclic.
Proof of main theorem. This follow immedi-
ately from the lemma and the main theorem of al-
gebraic Morse theory since all matched edges are
isomorphisms in C(G).


