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Categorification (a philosophy)

Categorification is the process of finding category theoretic
analogues of set theoretic ideas by "adding extra structure":

categorification

sets categories
elements objects

equations between elements isomorphisms between objects
functions functors

decategorification

Decategorification is the reverse process (forgetting the extra
structure)
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Example: a categorification of N

Objects:
f.d. k-vector spaces

Morphisms:
k-linear maps

k a field. The category k-Vect categorifies N. Decategorify by
taking dimension.

V decategorifies to dimV

V ⊕W decategorifies to dimV + dimW

V ⊗W decategorifies to dimV dimW
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Categorifying Z

Objects: bounded
chain complexes

Morphisms:
chain maps

The category Cb(k-Vect) categorifies Z.

C∗ decategorifies to χ(C∗) =
∑

i (−1)i dimCi

C∗ ⊕ D∗ decategorifies to χ(C∗) + χ(D∗)

C∗ ⊗ D∗ decategorifies to χ(C∗)χ(D∗)
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A classic example from topology

∆: a simplicial complex, ci = # faces of dim i

The Euler characteristic of ∆ is

χ(∆) =
∑
i≥0

(−1)ici

Ci (∆): free abelian group generated by faces of dimension i

d : Ck → Ck−1 sends

[vi1 , . . . , vik ] 7→
∑
j

(−1)j [vi1 , . . . , v̂ij , . . . , vik ]

χ(C∗(∆)) = χ(∆)
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The plan for this talk

The Vandermonde determinant is defined as

Vn =

∣∣∣∣∣∣∣∣∣
x1 x2

1 · · · xn1
x2 x2

2 · · · xn2
...

...
. . .

...
xn x2

n · · · xnn

∣∣∣∣∣∣∣∣∣ =
∑
π∈Sn

(−1)inv(π)x
π(1)
1 x

π(2)
2 ... x

π(n)
n

Categorify (evaluations of) Vn for x1, . . . , xn ∈ N
Accomplish this in a way analogous to Khovanov’s
categorification of the Kauffman bracket
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Khovanov homology

Categorifies the Kauffman bracket

〈K 〉 =
∑

α∈{0,1}n
(−1)h(α)qh(α)(q + q−1)s(α)

where K is a link diagram with n crossings,

h(α) = #1′s in α,

s(α) = #circles in α-smoothing
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The n-cube Cn = {0, 1}n

Partially ordered set with vertices {0, 1}n

Cover relation (edge) when you change a 0 to a 1:

000

100

010

001

110

101

011

111C3 :
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n-tuples of 1’s and 0’s encode smoothings of K

K =

1

2

3

0

1

100 011 110
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Edges encode cobordisms between smoothings

100

110

; =

Start with (100-smoothing)× [0, 1]

Remove cylindrical neighborhood of changing crossing
Replace with a saddle
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Category of cobordisms

Objects: closed
1-dim manifolds

Morphisms: 2-dim
cobordisms

The category Cob2 contains smoothings and cobordisms as its
objects and morphisms
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Replace vertices in Cn by corresponding smoothings
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Replace edges in Cn by cobordisms

A commutative
diagram in Cob2
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2D TQFTs and Frobenius algebras

A 2D TQFT is a monoidal functor from Cob2 to k-Vect.

assigns a k-vector space A to each circle

−→ A −→ A⊗ A⊗ A⊗ A

assigns linear maps to cobordisms

−→
(
m : A⊗ A→ A

)
multiplication

−→
(

∆ : A→ A⊗ A

)
comultiplication

−→
(
η : R → A

)
unit

−→
(
ε : A→ R

)
counit
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Apply a 2D TQFT (with q dimA = q + q−1)

A⊗ A

A

A

A

A⊗ A

A⊗ A

A⊗ A

A⊗ A⊗ A

m

m

m

∆

∆

∆

∆

∆

∆

Id⊗∆

Id⊗∆

Id⊗∆

An anti-commutative
diagram in R-gmod
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Direct sum down ranks and get a chain complex

A⊗ A

A

A

A

A⊗ A

A⊗ A

A⊗ A

A⊗ A⊗ A

m

m

m

∆

∆

∆

∆

∆

∆

Id⊗∆

Id⊗∆

Id⊗∆

A⊗ A A⊕3 (A⊗ A)⊕3 A⊗ A⊗ A
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Theorem (Khovanov)

The (shifted) homology groups of this chain complex are link
invariants and the graded Euler characteristic of this complex is
equal to the Kauffman bracket∑

i∈Z
(−1)iq dimH i = 〈K 〉

The (shifted) Khovanov homology groups give a strictly
stronger link invariant than the Jones polynomial
Khovanov homology is a functor. That is, cobordisms between
links induce maps between Khovanov homology groups

Alex Chandler North Carolina State University

A Categorification of the Vandermonde Determinant



Categorification Khovanov homology Categorifying the Vandermonde Determinant

Why did this construction work?

The Kauffman bracket is a rank alternating sum over a ranked
poset P = Cn ∑

x∈P
(−1)r(x)f (x)

Every interval of length 2 in Cn is a diamond (i.e. Cn is thin)
There is a {+1,−1} edge coloring of Cn for which each
diamond has an odd number of -1’s (a balanced coloring)
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Categorifying Vandermonde

Vn =
∑
π∈Sn

(−1)inv(π)x
π(1)
1 x

π(2)
2 ... x

π(n)
n

Sn has a thin poset structure: the Bruhat order
inv(π) is the rank function for this ordering
The Bruhat order has a balanced coloring

We’re in business!
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Bruhat Order on Sn

An inversion in a permutation π is a pair (i , j) with i < j and
π(i) > π(j)

inv(π) denotes the number of inversions of π
Bruhat order on Sn has a vertex for each π ∈ Sn

Has an edge (cover relation) π l σ whenever σ is gotten from
π (in one line notation) by transposing a non-inversion pair for
which inv(σ) = inv(π) + 1
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E.g. Bruhat Order on S3

123

213

132

231

312

321

(1,2)

(2,3)

(2,3)

(1,2)

(1,2)

(2,3)

(1,3)

(1,3)
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Colored Cobordisms: Cobn2

Objects: [n]-colored
closed 1-manifolds

Morphisms: color
preserving cobordisms

Let [n] = {1, 2, ..., n}. The category Cobn2 has

Objects: closed 1-manifolds with each connected component
given a color from [n]

Morphisms: 2-dimensional manifolds for which each connected
component has monochromatic boundary
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For example, let M = ###### and N = ######

is a colored cobordism from M to N, but not
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Permutations (vertices) encode colored smoothings

K a link diagram with crossings c1, ..., cn and π ∈ Sn

The π-smoothing of K is

Kπ = Kπ
1 q Kπ

2 q ...q Kπ
n ∈ Ob Cobn2

Kπ
i is gotten from K by giving c1, c2, ..., cπ(i) 1-smoothings

and all other crossings 0-smoothings
All components of Kπ

i are colored i
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π-Smoothing Example

c1

c2

c3

K =

π = 213 smoothing

Kπ
1 Kπ

2 Kπ
3
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Edges encode colored cobordisms

If π l σ then Kπ = Kπ
1 q Kπ

2 q ...q Kπ
n ∈ Ob Cobn2 and

Kσ = Kσ
1 q Kσ

2 q ...q Kσ
n ∈ Ob Cobn2

differ at exactly two colors. Use connected genus 0 cobordisms on
the colored pieces which differ, and identity (cylinders) on pieces
which do not change

213

231

;
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Replace vertex π with π-smoothing
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Replace edges with colored cobordisms

A (non) commutative
diagram in Cobn2
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2D colored TQFTs

Definition

A colored TQFT is a monoidal functor F : Cobn2 → k-Vect
which restricts to a TQFT on each color.

; Ax1

dim = x1

; Ax2

dim = x2

... ; Axn

dim = xn
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Special TQFTs and special Frobenius algebras

A 2D TQFT F is special if the following condition holds:

F

( )
F

( )
= ⇐⇒ µ ◦∆ = 1

A 2D colored TQFT is special if its restriction to each color is a
special TQFT
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Apply a Special Colored TQFT

Ax1⊗A⊗2
x2 ⊗A

⊗3
x3

A⊗2
x1 ⊗Ax2⊗A⊗3

x3

Ax1⊗A⊗3
x2 ⊗A

⊗2
x3

A⊗2
x1 ⊗A

⊗3
x3 ⊗Ax3

A⊗3
x1 ⊗Ax2⊗A⊗2

x3

A⊗3
x1 ⊗A

⊗2
x2 ⊗Ax3

∆⊗m⊗Id

Id⊗∆2m⊗∆m2

Id⊗∆2⊗m2

∆2m⊗∆m2⊗Id

Id⊗∆⊗m

∆2⊗m2⊗Id

∆⊗Id⊗m

∆2m⊗Id⊗m2∆

An anti-commutative
diagram in k-Vect
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Direct sum down ranks to get a chain complex

Ax1⊗A⊗2
x2 ⊗A

⊗3
x3

A⊗2
x1 ⊗Ax2⊗A⊗3

x3

Ax1⊗A⊗3
x2 ⊗A

⊗2
x3

A⊗2
x1 ⊗A

⊗3
x3 ⊗Ax3

A⊗3
x1 ⊗Ax2⊗A⊗2

x3

A⊗3
x1 ⊗A

⊗2
x2 ⊗Ax3

∆⊗m⊗Id

Id⊗∆2m⊗∆m2

Id⊗∆2⊗m2

∆2m⊗∆m2⊗Id

Id⊗∆⊗m

∆2⊗m2⊗Id

∆⊗Id⊗m

∆2m⊗Id⊗m2∆
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Theorem (C.)

Let K be the alternating two strand braid diagram of the
(2, n)-torus knot. Then the Euler characteristic of this chain
complex is equal to the Vandermonde determinant

Vn =
∑
i≥0

(−1)idimH i

K =
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What’s Next?

Questions:
Is this categorification functorial?
What kinds of polynomials do we recover for arbitrary knots?
Do specific classes of knots correspond to known classes of
polynomials?
Relation to Vn = x1 . . . xn

∏
i<j(xj − xi )
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Thank you!
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