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Abstract

We begin by introducing derived categories and describing why they are useful in a general
setting. The rest of the paper will be dedicated to understanding an equivalence of the A-model
and B-model of Dirichlet branes in string theory known as homological mirror symmetry. The
B-model is realized mathematically as coherent sheaves on a Kahler manifold, and the A-model
is realized as Lagrangian submanifolds of a Kéhler manifold. Roughly, the statement of mirror
symmetry in string theory is that the bounded derived category D*Coh(M) of coherent sheaves
on M is equivalent to the bounded derived category D’Fuk(M") of Lagrangian submanifolds
of the mirror manifold MV (this is called the Fukaya category).
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1 Introduction

In string theory, branes are smooth submanifolds of spacetime which can be thought of as a sort
of generalization of point particles. p-branes (branes of dimension p) propagate through spacetime,
sweeping out a (p+ 1) dimensional volume. 0-dimensional branes can be thought of as point parti-
cles. 1-dimensional branes are what we call strings. 2-dimensional branes are called membranes,
which is where the term brane originates. Strings, being 1-manifolds, can be either closed loops
(these are called closed strings) or can have endpoints (these are called open strings). Open strings



are allowed to propagate through spacetime subject to boundary conditions called Dirichlet con-
ditions. The set of allowable endpoints of a string is called a Dirichlet brane or D-brane. In
topological string theory, there are two mathematical models of D-branes: the A-model and the
B-model. A-model D-branes are described mathematically as certain Lagrangian submanifolds of
a Kéahler manifold, and B-model D-branes are described as coherent sheaves on a Kéhler manifold.
We aim to understand a certain equivalence between these models, which (roughly) comes in the
form of an equivalence of the derived category of coherent sheaves on a Kéahler manifold M with
the derived Fukaya category on the mirror manifold M.

In section 2 we will study derived categories. Section 3 will be an introduction to sheaf theory
concluding with a definition of coherent sheaves. At this point of the paper we will understand the
B-model of Dirichlet branes. Section 4 will give an introduction to manifold theory and symplectic
structures, and section 5 will describe the Lagrangian intersection Floer chain complex for pairs of
Lagrangian submanifolds of a symplectic manifold. Section 6 is where we find the definition of the
Fukaya category, the final piece to the puzzle. Now we understand both the A-model and B-model
of Dirichlet branes, and can make some sense of the mirror symmetry conjecture. Then in section
7, Kontsevitch’s conjecture of mirror symmetry is stated, and some closing remarks are given.

2 Derived Categories

Derived categories were introduced by Verdier in his PhD thesis, and since then there has been a
rapid development of the topic and its relatives. Derived categories appear in many fields of algebra,
topology, algebraic geometry, and even mathematical physics. The main goal of this section is to
give enough of an introduction to derived categories to later be able to understand Kontsevitch’s
conjecture of homological mirror symmetry: an equivalence between certain derived categories.

Definition 1. Let C be a category, and W some class of morphisms in C. The localization
C[W 1] is the category uniquely determined by the universal property:

there exists a natural functor C — C[W =1 and given any category
D, a functor F : C — D factors uniquely over C[W 1] if and only if
F sends all arrows in W to isomorphisms.

Morally, to construct the localization C[W~!], simply take the objects of C' as objects of
C[W~1] and for each morphism f € Hom(Oy,02) "W add in a formal inverse f~! € Hom(Os, O1)
and make the identifications ff~1 = 1p, and f~1f = 1p,.

In what follows, we would like to allow ourselves to work in a category in which chain complexes
and homologies of chain complexes make sense (that is, we need the notions of a zero object, kernels,
images, and cokernels). Without going into too much technical detail, suffice to say that abelian
categories are exactly the categories where these notions make sense. For formal definitions, the
reader is referred to [4] Chapter 2 Section 5.

Definition 2. A morphism f : Ko — Le of complezes in an abelian category is called a quasi-
isomorphism if the induced map H, (Ko) — H,(Ls) is an isomorphism for alln. Chain complexes
Ce and D, are quasi-isomorphic if there exists a compler Eo and quasi-isomorphisms:



Ce D,

Remark: If f : Kq — L, is a quasi-isomorphism, then K, and L, are certainly quasi-isomorphic
via:

L, K,

but K, and L, need not have a quasi-isomorphism between them in order to be quasi-
isomorphic.

For example, in the case of simplicial chain complexes of a triangulable topological space X, one
can construct situations where we have two triangulations X; and Xy with chain complexes Co(X7)
and Ce(X2) such that there is no chain map f : Ce(X1) — Ce(X2) which induces isomorphisms on
homology groups. However, we know that the homology groups are indeed isomorphic, and would
like to regard Co(X1) and Ce(X2) as being quasi-isomorphic (after all, they are chain complexes for
the same space!). We introduce F, to extend the notion of quasi-isomorphism to this situation.
One can often find a common refinement of the triangulations (playing the role of F,), making the
simplicial chain complexes quasi-isomorphic.

Definition 3. The bounded derived category D'(A) of an abelian category A is the localization
of (the full subcategory of) bounded complexes in A at the class of quasi-isomorphisms. That is:

e Objects are bounded complexes in A (complexes with only finitely many nonzero terms)
e Fach chain map f: Ce — D is a morphism in Db(A)
o If g: Cy — D, is a quasi-isomorphism, we also include a formal inverse g~ : Dy — C,

e Include formal compositions f1 o fo for all possible combinations whose terminal object and
initial object coincide

o When f1 and fo are true chain maps (neither arise from the 2nd or 3rd bullet), identify the
composition fi o fo with their actual composition as chain maps.
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e If g is a quasi-isomorphism, identify go g~ and g~ o g with the corresponding identity chain

maps.

In the same way we can also define the bounded above and bounded below derived categories
D~ (A) and D*(A). Use D(A) to denote a derived category without specifying which of the above
we are talking about.



Facts/Remarks about the definition:

1. Since homotopy equivalences are quasi-isomorphisms, chain homotopic maps in the derived
category are automatically identified.

2. Any morphism in D(A) can be expressed as a roof:

where s is a quasi-isomorphism, and we set f = gs—!.

3. Derived categories allow one to tie together all ‘derived functors’ into one, called the ‘total

derived functor’. In a sense, derived categories are the proper setting to study derived functors
(see 4] or [6] for details)

4. Since quasi-isomorphisms are now identified, we can freely replace an object O € A by any
free, injective, or projective resolution, whichever is convenient at the time (again, see [4] or

[6] for details).

Our goal is to provide enough background and motivation to at least understand Kontsevitch’s
conjecture which is now known as homological mirror symmetry (see section 7).

3 Coherent Sheaves

Let A be an abelian category, let X be a topological space, and let & denote the collection of open
sets of X. A Presheaf on X with values in A is a rule F' which does the following:

e For each open set U, F'(U) is an object in A, and F (&) = {0}.

e For each inclusion U C V, F assigns a morphism F(V) — F(U).

e For each U C V C W, the following diagram commutes

Given presheafs F,G on X with values in A, a morphism of presheaves is a rule n which
does the following:



e For each open set U, ny is a morphism F(U) — G(U) in A.

e For each inclusion U C V, the following diagram commutes:

These definitions together give us the notion of the category of presheaves on X with values
in A, denoted Presheaves 4(X). Here we expanded the definitions as much as possible for clarity,
but this definition can be made more concise by saying Presheaves 4(X) is just the functor category
from U°P to A where U is the poset of open sets in X.

Example 4. Let A = R-Vect be the category of real vector spaces and X any topological space.
Define CO(U) be the set of all continuous functions from U to R. For U C'V define the morphism
CoV) — C%U) to be the map which restricts the continuous function f : U — R to a continuous
function fly : V —R. U° is a presheaf on X with values in R-Vect.

Example 5. Let M be a smooth manifold (see section 4 for manifold definitions) and let C*°(U)
be the set of smooth functions U — R again using restriction to get morphisms. Then C* is a
presheaf on M with values in R-Vect.

Example 6. Consider the abelian group A to be a topological space (with the discrete topology),
and let X be any topological space. Given an open U C X, let A(U) be the set of continuous maps
from U to A. Then A is a presheaf on X.

Let us now endow our presheaves with some additional structures.

Definition 7. Let F' be a presheaf on X with values in A, and assume that A is concrete (so
objects in A are just sets possibly with some additional structure). Then F' is a Sheaf (on X with
values in A) if the following condition holds:

Let {U;} be an open cover of an open set U in X, and suppose that we have a family {f; €
F(U;)} such that f; and f; get mapped to the same element under the maps

then there exists a unique f € F(U) which maps to f; under F(U) — F(U;) for each i.

One can check that the three examples given above are all sheaves. Given any presheaf, one
can construct a sheaf via a natural rule a : Presheaves(X) — Sheaves(X) in such a way that the
functor a is the left adjoint to the forgetful functor Sheaves(X) — Preheaves(X). a(F) is called
the sheafification of F'. See [6] Chapter 1 for details.



Definition 8. Let (X,0Ox) be a sheaf with values in the category of rings (call this a ringed
space). A coherent sheaf on (X,Ox) is a sheaf F' on X for which:

e For each open set U C X, F(U) is a left Ox(U)-module

e Given U CV in X, the following diagram commutes:

Ox (V) x F(V) — F(V)

Ox(U) x F(U) — F(U)

where the vertical arrows are the sheaf restrictions and the horizontal arrows are the module
actions.

o Fuvery point x € X has a neighborhood U for which there is a surjective morphism

(OX(U)>@n — F(U) —0

for some natural number n.

e For any open U C X, any natural number n, and any map of modules

o (on))@" — F(),

there is a surjective morphism

om
<(’)X(U)) — kergp — 0
for some natural number m.

The category of coherent sheaves on a space X, Coh(X) is the full subcategory of Presheaves(X)
consisting of all coherent sheaves.

4 Smooth Manifolds and Symplectic Geometry

The objects of the Fukaya category are Lagrangian submanifolds of a given symplectic manifold
and morphisms in this category are given by intersections of these submanifolds (more precisely,
the morphism sets are exactly the chain groups in Lagrangian intersection Floer cohomology). In
this section, we recall the basic notions of smooth manifolds and symplectic geometry needed in



what follows. For a more complete treatment, see [5| for smooth manifolds and [3] for symplectic
geometry. Here, we will settle for ‘working definitions’ that are quick to write down and work with,
however in a more careful treatment there are better (for example, coordinate invariant) definitions
of many of the concepts presented here.

A smooth manifold of dimension n is a topological manifold (M, {¢, : Uy — R™}4er) such
that for each o, 8 € I, ¢ 0 qS/gl is a smooth function R™ — R™ (i.e. all orders of partial derivatives
of coordinate functions exist everywhere).

Define the space of smooth functions on M:

C®(M)={f:M —=R| fogp,"is smooth for all a}.

At any point p € M, one can define the tangent space at p, denoted 7),M, as the vector
space spanned by the functionals {8‘;’; » 1 << n} where 621- o C*®(M) — R acts by
8;8131' p( f) = [ &aﬂ ( fo ¢_1)] (p). Thus the tangent space is a vector space of dimension equal to the
dimension of M, and tangent vectors act on smooth functions by taking their directional derivatives

at a point.

The cotangent space at p € M is just the dual space of the tangent space,

T, M = (T,M)" = {linear maps T,M — R}.

The dual basis to {B(Zi . 1<i< n} is denoted {da:i|p 1< < n} so that da:i\p%‘p =0

is equal to 1 when 7 = j and 0 otherwise.

A differential k-form § on M is an assignment of an alternating multilinear map £, :
TpM®k — R to each point p € M which varies smoothly with respect to p € M. Here, alternating
means that for any i < 7,

Bp(’l)l, ooy Ugy eny Vg, ...,’Uk) = —ﬁp(vl, ey Ugyeeny Uy enny Uk)

and multilinear means that (3, is linear in each coordinate.

Given a differential 1-form S, at any p € M, () is just an element of the dual space T,/ M.
Thus we can write 8, = > | ¢;dz’|, in terms of the dual basis. Given a differential k-form o and
a differential /-form g, define the wedge product a A 8 by the formula:

(A B)p(v1, .oy Ugye) = T > sen(m)a(vr(ty, oo Un(i)) BUn(kr1)s -oos V(o))
One can check directly that a A § is alternating and multilinear, and is thus a differential

(k + ¢)-form.

Example 9. Consider M = R? with global coordinates x,y. Then dx and dy are both 1-forms.
Their wedge product is:

(dz A dy)p(v1,v2) = dalp(v1)dylp(va) — dlp(vz)dylp(v1)
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for any vi,ve € TR,

Lemma 10. In any coordinate chart ¢ : U — R™, a differential k-form a can be written as a linear
combination of the forms dx™ A ... A dz™ = dx! :

o= E O[[dl‘]
I

where I = {i1 < ... <} and each ay is a map U — R.

Define the exterior derivative da of the form « locally via the formula
da = daj Ada’
T

where the exterior derivative df of a function f : U — R is defined by:

One should check that this definition is independent of the coordinate chart used.
Definition 11. A symplectic form w on M is a differential 2-form which satisfies the following
properties:

e du=0
e For any vector v # 0 there exists a vector u for which w(v,u) # 0.
These conditions are usually stated in words as “w is closed and nondegenerate”. Given a

smooth manifold M with a symplectic form w, we will refer to the pair (M,w) as a symplectic
manifold. One can check that all symplectic manifolds are even dimensional.

Example 12. Consider the manifold M = R?"™ with global coordinates {x',...,z",y*, ...,y"}. Con-
sider the standard symplectic form:

n
wo = dei A dyt.
=1

The reader should check that w is a symplectic form on R*™. In a certain sense, by Darbouz’s
theorem, every symplectic form on any manifold is locally equivalent to this form (See [3] for a
more precise explanation).

Given a submanifold L C M (a subset of M which is a smooth manifold), the tangent space
T,L is a subspace of T),M for each p € L.

Definition 13. Let (M,w) be a symplectic manifold. A submanifold L is a lagrangian subman-
ifold if



o dimL = JdimM
® w1, =0 for eachpe€ L.

Example 14. Continuing on from the previous example, we see that the submanifolds

M, = {(z',...,2",0,...,0) | ' € R}

My = {(07 ...,O,yl, 7yn) | yl € R}

are lagrangian submanifolds with respect to the standard symplectic form.

5 Lagrangian Intersection Floer Theory

To construct the Fukaya category, we will need to make use of a powerful construction on symplectic
manifolds known as Lagrangian intersection Floer Cohomology. Here we will say just enough
to be able to define the Fukaya category and leave out most of the technical details.

The tangent bundle to M is the space TM = Il,enT,M. It is a good exercise to write down
charts based on the atlas for M which gives T'M the structure of a smooth manifold. To construct
the Lagrangian intersection Floer chain complex, we will need our manifold M to have an almost
complex structure J, compatible with the symplectic form w. That is, a map J : TM — TM
which satisfies

L J2=-1
2. w(Ju, Jv) = w(u,v). That is, w is J invariant.
3. gs(u,v) := w(u, Jv) is a symmetric positive definite bilinear form.

Example 15. Let M = R?" and define the standard almost complex structure

0 0
%@w)—mn

0 0
%Qw)“wj

The reader should check that Joy is compatible with the standard symplectic form wy from the
previous section.

p

p

It is a classical result that every symplectic manifold has compatible almost complex struc-
tures, and the space of all such structures is contractible. In the statement of homological mirror
symmetry, we will need the concept of a Kédhler manifold. A Kéahler manifold is just a symplectic
manifold with a compatible integrable almost complex structure. Since we will not do much with
these manifolds, we skip the definition of integrable and instead refer the reader to [3].



Given a symplectic manifold M with a compatible almost complex structure J, suppose we
have two transversally intersecting Lagrangian submanifolds Ly, Ly (that is, T,L1 + T, Ly = T,M
at any p € Lo N Ly). Actually, even if the submanifolds do not intersect transversally, one can
perturb them so that they do, and the following theory can be shown to be invariant under these
small pertubations (see 2] for details). We will now glance at the answer of what the Lagrangian
intersection Floer chain complex is, and afterwards describe all of the pieces which we have not yet
introduced. The Lagrangian intersection Floer chain complex is

CF(Lo,L1) = @ A-p

pELoNLy

endowed with the differential

d(p) = (#M (p, q; M))TE(“)Q-

qeLoNLy
[u]:ind[u]=1

Let us now clear up the mystery of what this all means. The reader is owed the following
definitions:

1. The Novikov field A over a field K (for our purposes we will use K = Zs):

:{ZaTA

a; €K, \; €R, lim \; = }
1=0

1—00

2. The moduli space M(p, q; [u])

Given p,q € LoNL;. A holomorphic strip between p and ¢ is amap u : Ryx [0, 1]; (subscripts
indicating which variable is used on which piece) satisfying the following conditions:

e The Cauchy Riemann equation: g7 + J g 8“ =0.

e Boundary conditions:
u(s,0) € Lo,  wu(s,1) € Ly, hm u(s,t) =q, lim u(s,t) = p.

—00 S—00

e Finite energy:

ds dt < oo.

Call E(u) the energy of the holomorphic strip u. One can show that this energy depends
only on the class [u] € mo(M, Lo U L) in the 2nd relative homotopy group.

Remark: for this to make sense, notice that by the Riemann mapping theorem, R x [0, 1] is
biholomorphic to the closed unit disk with two points removed D2\ {£1}, and u extends to
a map D2 — M with u(—1) = p and u(1) = ¢. So when we talk about [u] as an element of
ma(M, Lo U L) we need to think of w in this way as a map from the disk into M (see figure

1).
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Lo
q < — D

Ly

I

U
Lo /
U
Ly

Figure 1: We can think of a holomorphic strip equivalently as a map from a closed unit disk. Labels
on boundaries indicate where they are sent in M via the map u.

Now, let W(p, ¢) be the set of finite energy holomorphic strips between p and ¢. R acts on
W (p, q) via translation in the s direction: (a - u)(s,t) = u(s — a,t) for a € R. We set

M(p,q) =P O g

W(p, g;[u]) = {v e W(p,q) | [v] = [u]},
M(p,g;[u]) = WP G 1) o
where again [u] denotes the class of u in ma(M, LoU L1). The moduli space W(p, ¢; [u]) turns
out to be a smooth manifold.

3) The Maslov index ind[u], defined by:

ind[u] = dimM(p, ¢; [u]) + 1.

When ind[u] = 1 the moduli space M(p, ¢; [u]) has dimension 0, so by compactness, this is a
finite set of points. We will work over K = Zy and let #M(p, ¢; [u]) just be the number of
points in the moduli space modulo 2.

Details aside, here is the point: the Maslov index can be used to define degrees of points in
Lo N Ly in such a way that the dimensions of the moduli spaces M(p, ¢; [u]) are given by the
differences in degrees of p and ¢q. Under suitable conditions, the Lagrangian intersection Floer
complex is indeed a chain complex with a degree 1 differential. One condition one can use to
guarantee this is [w] - ma(M, L;) = 0 for i = 0,1 (where the action is defined by integrating w
on any disk bounded by L;). For details, see [2].

6 A, -Categories and the Fukaya Category

The Fukaya category has the structure of an A,.-category. First we define A,.-categories in general
and then describe the Fukaya category as an example.
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Definition 16. An A-category consists of objects L; and morphism spaces Hom(L;, L;) which
are graded vector spaces such that for each k > 1 and each tuple (L;,, L;,, ..., L;,), we have a degree
(2 — k) operation:

my : Hom(L;, _,, L;, ) ® Hom(L;, ., L;, ,)® ...® Hom(L;,, L;;) — Hom(L;,, L;,)

subject to the A relations:
k k—¢
Z Z ME+1—-¢ <pk, s Pjt+1, 1T (pj+£, ---,pj+1) » Dy, ---7p1> =0.

(=1 j=0

(using commas instead of tensor symbols for brevity) whenever the above sum is defined.

This sum looks a bit scary; but after looking at the relations for small k& we shall see it is a
natural constraint:

The A relation reads

m (ml(m)) =0

or in other words, m; is a differential.

The Ao relation reads

mi <m2(P2,p1)> + ma (Pz,ml(Pl)) + ma <m1(292),p1> = 0.

Considering m; = d as a differential and my = - as a product, this reads

—d(p2 - p1) = p2 - d(p1) + d(p2) - p1.

Up to a sign, this looks like a Liebniz rule for the product mo = - with respect to the
differential m; = d.

k = 3| The A, relation reads

ma <P3, m2(P2,p1)> + mg <m2(p37p2),p1> +

my <m3(p3,p2,p1)> +m3 <103,p2, ml(p1)> +m3 <p3,m1(p2),p1> + ms3 (ml(p?))am,pl) =0

Again, viewing me as a product, this looks like the requirement that mo is associative up to some
error terms (and up to a sign).
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Definition 17. Given a symplectic manifold (M,w), the Fukaya category, Fuk(M) is the A
category with

e Objects: Compact closed oriented spin Lagrangians L with [w] - mo(M, L) = 0.

e Morphisms: Hom(Lg, L1) := CF (Lo, L1)

® My : CF(LZk_17L1k> & CF(Lik_z, Lik—l) X..Q CF(LZ‘O, Lll) — CF(LZ‘O, sz)

is defined by

Mk Dy P15 > P1) = 3 #M(p1, ., pr; [u]) TF g

qELiO ﬂLik
[u]:ind[u]=2—k

where M(p1, ..., px; [u]) is the moduli space of finite energy holomorphic k-gons. That is, maps
u:D?2— M:

D2
b3 b1

Pk

where the labeling of points and arcs correspond to where they are sent by wu.

It takes a fair amount of work analyzing compactifications of moduli spaces to show that these
indeed satisfy the Ay relations. We will not do that here (see 2] for details).

7 Mirror Symmetry and Closing Remarks

We now have all of the pieces in place we need to understand Kontsevitch’s conjecture:

Conjecture 18 (Kontsevitch). Certain Kdhler manifolds come in mirror pairs X, X"V such that

there is an equivalence
DPCoh(X) = DPFuk(X")

between the bounded derived category of coherent sheaves on X and the bounded derived Fukaya
category on XV.

To be fair to the reader, it should be noted that we are still missing some details:
1. The Fukaya category is not a true category (associativity holds only up to homotopy in an

Aso-category) so one needs to be careful when defining what it means to take the derived
category of an A,,-category.
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2. We have not defined what it means for categories to be equivalent.

3. Derived categories are examples of what are known as triangulated categories so the above
is actually a triangulated equivalence.

After learning the drastically differing details of the constructions of these categories D?Coh(X) and
DPFuk(XV), it should be of great surprise and delight that there should be any kind of equivalence.
For any mirror pair of manifolds, one can now use sheaf theoretic methods to compute Fukaya
categories. Conversely, one can use methods of symplectic geometry to compute the categories of
coherent sheaves. This symmetry may lead to exciting new advances in both fields. Of course, this
paper has left out a large amount of details. The interested reader should consult |1] for further
study into mirror symmetry.
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