
Chapter 1
Categorical Diagonalization

Alex Chandler, Nachiket Karnick, and Dmitry Vagner

Abstract Beginning with the scenario in which a linear operator is diagonalized, we
develop refined notions of the involved properties—the vanishing of a polynomial
in the endofunctor—and structures—the acquiring of an idempotent decomposition
of the space the operator acts on—and discuss how to go between the two. Most
importantly, we recall Lagrange interpolation, which, from a collection of distinct
eigenvalues, produces an idempotent decomposition. We then categorify this picture
by finding categorified decompositions corresponding to functors on monoidal ho-
motopy categories. We then proceed to look at several examples, culminating in the
diagonalizability of the full twist functor on Rouqier Complexes in the representa-
tion theory of Hecke algebras.

1.1 Classical Linear Algebra

Recall the following situation from linear algebra. Suppose we have a linear endo-
morphism

f : V →V

of k-vector spaces with dimV = n. Suppose furthermoe that there are distinct scalars
{κi}n

i=1 ⊂ k and vectors {xi}n
i=1 ⊂V such that for all i ∈ {1, . . . ,n}, we have
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f xi = κixi.

We called the κi’s eigenvalues and the xi’s eigenvectors. If we choose the list of
eigenvectors as the basis for V in both domain and codomain of f , then the corre-
sponding matrix for f is a diagonal matrixκ1

. . .
κn

 .
We called this matrix the diagonalization of f .

Remark 1.1. Note that distinct eigenvalues is a sufficient but not necessary condi-
tion for diagonalizability of a linear endomorphism. The case where an operator is
diagonalized with repeated eigenvalues however is more difficult to categorify, and
hence we will restrict our attention to the case where all eigenvalues are distinct.

This allows us to deduce the relation

( f −κ1)( f −κ2) · · ·( f −κn) = 0.

The property of satisfying such an equation is called prediagonalizability. It will be
useful for our purposes—the categorification of this situation—to formulate further
aspects of f by investigating the relevant arrow theoretic structure. Consider the
direct sum decomposition given by the eigenvector basis.

V =
n⊕

i=1

kxi.

Universal properties endow each direct summand with projections and inclusions:

V → kxi kxi→V.

Note that one composition kxi→V → kxi of these maps is the identity for all i. We
will be more interested in the other composition V → kxi→V , which we denote pi :
V →V . We may call the pi projectors. The set {pi}n

i=1 gives a useful decomposition
of V . More formally, one can check that it satisfies the following relations.

p2
i = pi pi p j = 0 for i 6= j ∑i pi = 1V

Intuitively, the pi’s pick out the direct summand corresponding to the κi eigenspace.
This lets us recast ( f −κi)xi = 0 more arrow theoretically:

( f −κi)pi = 0 = pi( f −κi).

We can abstract this situation as follows. For the remainder of the section, let R
be a commutative ring, A an R-algebra, and V an A-module. Above we simply had
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R a field k, V a k-vector space, and A = EndV . We now formalize the ideas above
in the following definitions.

Definition 1.1. We say f ∈ A is prediagonalizable if there exist distinct scalars
{κ}i∈I ⊂ R such that

∏
i∈I

( f −κi) = 0.

We also assume that any product over a strict subset S of I is nonzero.

Definition 1.2. A finite family {pi}i∈I ⊂A is said to be a complete orthogonal idem-
potent decomposition of A if p2

i = pi, pi p j = 0 when i 6= j, and ∑i pi = 1.

Definition 1.3. We say that f ∈ A is diagonalizable if there exists a complete or-
thogonal idempotent decomposition {pi}i∈I of A and a family {κi}i∈I ⊂ R such that
the following condition holds for all i ∈ I.

( f −κi)pi = 0 = pi( f −κi).

When none of the pi are zero, we call {κi}i∈I a spectrum.

Under a small assumption, these two conditions are equivalent.

Proposition 1.1. If f ∈ A is diagonalizable with spectrum {κi}i∈I , it is prediago-
nalizable. If f ∈ A is prediagonalizable with scalars {κi}i∈I such that κi − κ j is
invertible in A whenever i 6= j, then f is diagonalizable.

Proof. Suppose f is diagonalizable with spectrum {κi}i∈I and complete orthogonal
idempotent decomposition {pi}i∈I . Then

∏
i∈I

( f −κi) = ∑
j∈I

p j ∏
i∈I

( f −κi)

= ∑
j∈I

p j( f −κ j)∏
i6= j

( f −κi)

= 0

The spectrum condition ensures that no subproduct vanishes. Now, conversely, sup-
pose that f is prediagonalizable. We construct the idempotents pi via Lagrange
interpolation:

pi( f ) = ∏
j 6=i

f −κ j

κi−κ j

This is well defined since κi−κ j is by assumption a unit for i 6= j. It follows imme-
diately that ( f −κi)pi( f ) = 0 = pi( f )( f −κi). It remains to show that {pi( f )}i∈I
constitutes a complete orthogonal idempotent decomposition.

By prediagonalizability, the polynomial ring k[ f ]∼= k[x]/〈( f −κ1) · · ·( f −κ|I|)〉
consists of representative polynomials of degree strictly below |I|. We have that
pi( f )∈ k[ f ] satisfies pi(κi) = 1 and pi(κ j) = 0 when i 6= j. Hence L( f ) =∑i ai pi( f )
is the unique polynomial in k[ f ] such that L(κi) = ai for all i. It follows that any



4 Alex Chandler, Nachiket Karnick, and Dmitry Vagner

Q( f ) ∈ k[ f ] can be rewritten as ∑i Q(κi)pi( f ). In particular, letting Q( f ) = 1 yields
completeness 1 = ∑i pi( f ), letting Q( f ) = pi( f )2 yields idempotence pi( f )2 =
pi( f ), and letting Q( f ) = pi( f )p j( f ) yields orthogonality pi p j = 0 when i 6= j.

The following section will be dedicated to categorifying this construction.

1.2 Categorified Linear Algebra

We want to categorify everything in sight. We replace the commutative ring R with
an R-additive category R, the R-algebra A with an R-additive monoidal category A ,
and the A-module V with an A -module V , i.e. an R-additive category V equipped
with a monoidal functor A → End(V ). Finally, we fix a monoidal subcategory
K ⊂ A of scalar objects, which induce scalar endofunctors λ ⊗− : V → V for
each scalar λ . We call a scalar λ invertible if there is another scalar λ−1 such that
λ⊗λ−1'1' λ−1⊗λ . We call a scalar λ small if the infinite direct sum

⊕
n≥0 λ⊗n

exists in A and is isomorphic to its direct product. The smallness condition will be
needed to ensure the well definedness of the infinite constructions we will consider.

Remark 1.2. If you are so inclined, you can think of A as a monoid object on R in the
monoidal category of commutative rings under tensor product, and A as a (weak)
monoid object on R in a suitable monoidal 2-category of R-additive categories.

Remark 1.3. Instead of an R-additive category, we may also consider an Abelian or
Triangulated category, in which case we restrict End(V ) to exact endofunctors.

What would it mean to categorify the equation f xi = κixi? A naive guess would
be to consider V -objects M such that, given scalar λ and F ∈ V , there is an iso-
morphism F⊗M ∼= λ ⊗M. We call such M weak λ -eigenobjects for F . For such a
structure to be sufficiently amenable to categorical machinery, however, we must fix
this isomorphism in a natural way.

Definition 1.4. Suppose λ ∈K , α : λ → F in A , and M ∈ V is nonzero. We call
M an eigenobject of F with eigenmap α or an α-eigenobject if the following is an
isomorphism.

α⊗1M : λ ⊗M→ F⊗M.

In this situation, we call α a forward eigenmap. We may also consider a backward
eigenmap β : F → λ defined similarly. We define the α-eigencategory Vα to be the
smallest full additive subcategory of V containing the α-eigenobjects.

We now want to consider categorified analogs of prediagonaizability and diag-
onalizability. To do so, we must categorify the difference f −κi. This can be done
via the mapping cone construction. If one is not familiar with this choice, intuition
can be gained from considering the fact that the cone of an isomorphism ϕ : N→N′

is contractible: Cone(ϕ) ' 0 is a deformation retract. Because we will work in ho-
motopy categories, we will be allowed to “cancel” isomorphisms of objects, thus
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categorifying n− n = 0. In order to ensure the existence of mapping cones, we
switch to their natural setting in triangulated categories, in which we have canonical
distinguished triangles

X
φ−→ X ′→ Cone(φ).

The Grothendieck group of a triangulated category is given relations 〈C1〉+ 〈C3〉=
〈C2〉 for distinguished triangles C1→C2→C3, thus yielding the relation

〈Cone(φ)〉= 〈X ′〉−〈X〉,

and hence successfully categorifying subtraction. More formally, we will henceforth
let A be a monoidal homotopy category (A ,⊗,1), i.e. we assume that there exists
an additive monoidal category (B,⊗,1) such that A is a full triangulated subcat-
egory of K(B), the homotopy category of chain complexes in B, with its induced
tensor product. With this in hand, we can now make sense of how to categorify
prediagonalizability.

Definition 1.5. We say F ∈A is categorically prediagonalizable if there is a finite
set of maps {αi : λi→ F}i∈I , with λi scalar objects, such that⊗

i∈I

Cone(αi)' 0

is a minimal vanishing tensor product. We call the set {αi}i∈I a prespectrum for F .
Note that it is not unique.

Remark 1.4. We will also like an extra condition called strong commutativity, which
ensures that any permutation π : I→ I preserves the vanishing of the tensor product
of eigencones

Just as in the decategorified case, we would like to use prediagonalizability to
construct an idempotent decomposition via a sort of Lagrange interpolation. We
first need to define what that would entail. To do so, however, we will introduce
the language of twisted complexes. The goal of twisted complexes is to formalize
iterated mapping cones. This will entail interesting categorifications of certain sums.

Definition 1.6. A twisted complex (Ci,di j)i, j∈I consists of poset-indexed chain com-
plexes (in some additive category) Ci, along with maps di j : C j →Ci for j ≤ i such
that dii = dCi . We assume (I,≤) is interval finite, i.e. that [ j, i] = {k| j ≤ k ≤ i} is
finite, and furthermore stipulate that ∑k∈[i, j] d jkdki = 0.

Twisted complexes have as special cases bicomplexes. Given a twisted complex,
we can obtain a chain complex called the convolution, which generalizes the notion
of a total complex of a bicomplex.

Definition 1.7. Given a twisted complex (Ci,di j)i, j∈I , its convolution or total com-
plex is a chain complex given by
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Tot(Ci,di j)i, j∈I =

⊕
i∈I

Ci, ∑
(i, j)∈I2

di j

 .

The convolution is an interesting categorification of the sum of complexes. We
can then use this to provide an interesting categorification of our notion of idempo-
tent decomposition.

Remark 1.5. Note that the convolution is distinct from simply taking the direct sum
of complexes (Ci,dCi) in that it provides a more interesting “twisted” differential.

Definition 1.8. Let (A ,⊗,1) be a monoidal homotopy category and P=(Pi,di j)i, j∈I
a finitely indexed twisted complex in A . We say P is an idempotent decomposition
of 1∈A if the Pi are nonzero, Pi⊗Pi ' Pi, Pi⊗P j ' 0 when i 6= j, and Tot(P)' 1.

This gives us the language to define what it means for a functor F ∈ A to be
diagonalizable.

Definition 1.9. Let F be an object of the homotopy monoidal category (A ,⊗,1),
(I,≤) a finite poset, {λi}i∈I ⊂K a set of scalar objects, {αi : λi → F}i∈I a set of
morphisms in A , and P = (Pi,di j)i, j∈I a twisted complex in A . We say (Pi,αi)i∈I
is a diagonalization of F if P is an idempotent decomposition of 1 ∈A , and for all
i ∈ I:

Cone(αi)⊗Pi ' 0' Pi⊗Cone(αi).

We would now like to categorify Langrange interpolation so as to use prediaog-
nalizability to construct a diagonalization of F ∈ A . Letting c ji =

f−κ j
κi−κ j

, we have
that pi = ∏ j 6=i c ji. We will then hope to define

Pi =
⊗
j 6=i

C ji,

where C ji categorifies c ji. But how do we categorify c ji? We will make use of the
infinite geometric series expansion

f −κ j

κi−κ j
= κ

−1
i

(
f −κ j

1− κ j
κi

)
= κ

−1
i ( f −κ j)(1+(

κ j
κi
)+(

κ j
κi
)2 + · · ·)

= 1
κi
( f −κ j)+

κ j

κ2
i
( f −κ j)+ · · ·

We could naively categorify this sum via
⊕

n≥0 λ
−1
i Cone(α j)⊗(λ jλ

−1
i )⊗n given

the eigenmap α j : λ j → F . We will, however, want to also keep track of the eigen-
map αi : λi → F . This is where the convolution will again save us, allowing for a
categorification of sums with more interesting differentials.
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Definition 1.10. Let α : λ→F and β : µ→F be maps from invertible scalar objects
λ and µ , such that λ µ−1 is small. We then define the complex

Cα,β = Tot


λ

µ

λ 2

µ2

1
µ

F λ

µ2 F · · ·

1
µ

α − λ

µ2 β
λ

µ2 α − λ 2

µ3 β


Given the asymmetry of the choice of numerator and denominator, it will be useful
to define the similar chain complex below. Note the homological shift [1].

Cβ ,α [1] = Tot


1

λ

µ

λ 2

µ2

1
µ

F λ

µ2 F · · ·

− 1
µ

β
1
µ

α − λ

µ2 β
λ

µ2 α − λ 2

µ3 β


Note that if we removed the arrows pointing southwest, the convolution would

correspond to our naive guess as to the categorification. We are finally ready to
categorify Lagrange interpolation, and hence present our main theorem.

Remark 1.6. In the following theorem, we will use a condition called “strongly com-
mutes” referring to eigenmaps. This is to ensure that eigencones commute, which
we will need in our proofs.

Theorem 1.1. Consider the monoidal homotopy category (A ,⊗,1) and a categor-
ically prediagonalizable object F with prespectrum {αi : λi → F}i∈I , where (I,≤)
is a finite totally ordered set, such that each λi is invertible and λiλ

−1
j is small

whenever j < i. Then the following categorified projectors constitute an idempotent
decomposition of 1.

Pi =
⊗
j∈I

C ji,

where C ji = Cλ j ,λi , where we use the first diagram in Definition 1.10 when j > i and
the second diagram when i > j.

Remark 1.7. To ensure the smallness of λiλ
−1
j , it is sufficient to suppose that

eigenobjects λi have distinct homological shifts.

For a proof of this theorem, consult [CITE]. The following section will go
through some examples to demonstrate these ideas.
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1.3 Preliminary Example

Our first example will take place in a category which serves as a toy model for the
category of Soergel bimodules in the simplifying case n = 2. This similarity will
preempt some of the phenomena we will see in the subsequent section on the full
twist.

Example 1.1. Let A = Z[Cn] where Cn = {1,x, ...,xn−1} is the cyclic group of order
n, and consider the homotopy category Kb(A-mod) with monoidal structure ⊗Z.
Consider the following complex

0 A A Z 01−x εx→1

We choose the convention where by writing an element a ∈ A above an arrow, we
indicate the map that multiplies by a, writing εx→1 denotes the map that sets x equal
to 1, and underlining a term in the complex sets it to homological degree zero. We
will diagonalize the functor F : Kb(A-mod)→ Kb(A-mod) which acts by tensoring
on the left with this complex. Note that, by Morita theory, natural transformations
between functors given by tensoring with a complex are specified by chain maps
between the corresponding complexes. Suppose we had an eigenmap of the form

0 A A Z 0

Z

α0

and let’s be greedy and expect an eigenobject of the form M = (0→M→ 0). Then
the condition Cone(α0)⊗Z M ' 0 requires that

0 M M[Cn] M[Cn] M 0
α0(1) 1−x εx→1

has zero homology and thus Ker(1− x) = Imα0(1), forcing α0 to be the map

α0 : 1 7→ 1+ x+ x2 + ...+ xn−1.

The reader can check in this case that for M = A, the complex Cone(α0)⊗A is
indeed homotopic to 0, and thus A is a weak eigenobject of F with eigenmap α0.
An eigenmap of the form

0 A A Z 0

Z

α

is not possible since there are no such nonzero chain maps. Suppose that
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0 A A Z 0

Z

α1

were an eigenmap with eigenobject M. Then

0−→M[Cn]
(1−x,0)−−−−→M[Cn]⊕M

εx→1⊕α1(1)−−−−−−−→M −→ 0

must have zero homology. However, there is no way to choose α1 so that there
is no homology in degree 1. Thus we are forced to consider a more complicated
eigenobject (one that is not concentrated in a single homological degree). Luckily,
since there are only two possible eigenmaps, if we are to succeed we must have

Cone(α1)⊗Z Cone(α0)' 0.

Thus Cone(α0) must be the eigenobject corresponding to α1. With the choices α0 =
(1+ x+ ...+ xn−1), M = A, and α1 = 1 we will argue that this is indeed the case.
Cone(α0) now looks like

0−→ A
(1−x,0)−−−−→ A⊕Z εx→1⊕1−−−−→ Z−→ 0

which via Gaussian elimination is seen to be homotopic to

0 A A 0 01−x

and so, since we already have Cone(α1)⊗A' 0,

Cone(α1)⊗Cone(α0)' Cone
(

Cone(α1)⊗A
1⊗(1−x)−−−−−→ Cone(α1)⊗A

)
' 0.

Thus we have shown that F is prediagonalizable. We now use α0 and α1 to construct
the categorified projectors. P0 is the total complex of the diagram in Figure 1.1.
Applying Gaussian elimination to this total complex we find that

P0 ' . . . Z[Cn] Z[Cn] Z[Cn] Z[Cn] 0.

( xn−1
1−x

)
◦ εx→1 1− x

( xn−1
1−x

)
◦ εx→1 1− x

Similarly, P1 is the total complex of the diagram shown in Figure 1.2. After applying
Gaussian elimination, we get



10 Alex Chandler, Nachiket Karnick, and Dmitry Vagner

Z

Z
)

Z[Cn]

(
Z[Cn]Z

Z
)

Z[Cn]

(
Z[Cn]Z

α1

α0

α1

α0

α1

Fig. 1.1 To get the projector P0 we take the total complex of this diagram

Z
)

Z[Cn]

(
Z[Cn]Z

Z
)

Z[Cn]

(
Z[Cn]Z

α0

α1

α0

α1

Fig. 1.2 To get P1 we take a total complex of this diagram

P1 ' . . . Z[Cn] Z[Cn] Z[Cn] Z[Cn] Z.

( xn−1
1−x

)
◦ εx→1 1− x

( xn−1
1−x

)
◦ εx→1 1− x εx→1

1.4 Diagonalizing the Full Twist

1.4.1 Jucys-Murphy Elements

Here we will provide some background information for our flagship example cat-
egorical diagonalization in the context of Soergel bimodules. We will first define
Jucys-Murphy elements. Recall the map Z from the braid group Br(Sn) to the Hecke
algebra H(Sn) which sends σi to Hsi .

Definition 1.11. The Jucys-Murphy element ji ∈H(Sn) is defined as

ji = Z(σi−1...σ2σ1σ2...σi−1),
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Diagramatically the Jucys-Murphy elements can be defined as the image of the pure
braid indicated in Figure 1.3. Note that these elements have an interesting commu-

. . .

. . .

. . .

. . .

. . .

i

ji = Z

( )

Fig. 1.3 The Jucys-Murphy element ji

tator property: [ ji, jk] = 0 for k < i. Furthermore, these elements play an important
role in the theory of irreducible representations of H(Sn).

Theorem 1.2. There is a one-to-one correspondence between irreducible represen-
tations of H(Sn) and partitions λ of n. Moreover, the irreducible representation
Vλ corresponding to the partition λ has a Young basis indexed by the standard
Young tableaux {eT}T∈SY T (λ ), which also serves as a simultaneous eigenbasis for
j1, j2, ..., jn.

Remark 1.8. The standard Young tableaux SYT(λ ) of shape λ are fillings of the
Young diagram λ with the numbers 1, . . . ,n in such a way that the numbers in the
rows and columns are increasing rightward and downward.

Given a Young tableau, let x( k ) denote content of the box containing the num-
ber k (content was defined in the previous lecture). Then one can check that jk has
the following action on eT :

jkeT = v2x( k )eT .

We now define the operator we will be interested in diagonalizing.

Definition 1.12. The full twist on n strands is defined as

ftn = H2
w0

= j1 j2... jn.

Recall from a previous lecture that x(λ ) denotes total content of λ , and c(λ ) de-
notes the total column number of λ , ftn acts on Vλ by v2x(λ ), and by the theorem of
Graham, Mathas, Lusztig, we have:

Hw0b(P,Q,λ ) = (−1)c(λ )vx(λ )b(P∨,Q,λ )+ lower terms.

Thus, since (P∨)∨ = P we find that
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ftnb(P,Q,λ ) = (−1)2c(λ )v2x(λ )b(P,Q,λ )+ lower terms

so b(P,Q,λ ) is an eigenvector of ftn modulo lower terms. A corollary of this is the
following:

Theorem 1.3. The left cell representation V(−,Q,λ ) is isomorphic to Vλ .

1.4.2 Diagonalizing Rouqier Complexes

We want to categorify everything in the previous section, in particular the eigen-
vectors of the full twist. We have seen that the Rouqier complex Fs categorifies the
Hecke algebra element Hs, and tensor products of Rouqier complexes categorify
products of Hsi ’s. For example, FT2 = FsFs categorifies ft2 = HsHs. We will focus
on the case n = 2 and diagonalize the full twist FT2. Consider Hs = Hs1 ∈ H(Sn).
We know from the definition of a Hecke algebra that

H2
s = (v−1− v)Hs +1

and thus
(Hs− v−1)(Hs + v) = 0.

Therefore, Hs has eigenvalues v−1 and −v, from which we conclude that ft2 = H2
s

has eigenvalues v2 and v−2.
We begin the discussion of the categorification of this picture by recalling an

earlier computation:

FT2 ' . . . 0 Bs(−1) Bs(1) R(2)
−

Tensoring with Bs gives

FT2⊗Bs ' . . . 0 BsBs(−1) BsBs(1) Bs(2)
−

where, in general, M will denote the chain complex 0 → M → 0. When con-
text is clear, we will henceforth make the identification M = M. Also, recall that
BsBs(−1) = Bs(0)⊕Bs(−2) and BsBs(1) = Bs(2)⊕Bs(0). Using this fact, we can
apply Gaussian elimination to the above complex to get

FT2⊗Bs ' Bs(−2) = 1(−2)[0]⊗Bs

We hence say that Bs is a weak categorical eigenobject with eigenvalue 1(−2)[0], a
shift of the monoidal unit R.

Using the previous example as motivation we construct eigenmaps
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R(−2)

0 Bs(−1) Bs(1) R(−2) 0

α

and

R(−2)

0 Bs(−1) Bs(1) R(−2) 0

α1

The reader can check that Cone
(
α
)
⊗ Bs ' 0 so Bs is an eigenobject for FT2

corresponding to the eigenmap α with eigenvalue 1(−2)[0] (as computed in the

previous paragraph). The computation

Cone
(
α

)
⊗Cone

(
α
)
' 0

tells us that Cone
(
α
)

is an eigenobject for FT2 corresponding to the eigenmap

α with eigenvalue 1(2)[−2]. Note that the above homotopy decategorifies to the
prediagonalizability condition

(ft2− v−2)(ft2− v2) = 0.

Now let us compute the projectors. At the decategorified level, the eigenvalue v−2

of ft2 corresponding to the partition gives rise (via Lagrange interpolation) to the
projector

p =
ft2− v2

v−2− v2 =
bs

v+ v−1 ,

and the eigenvalue v2 corresponding to the partition gives rise to

p =
ft2− v−2

v2− v−2 = 1− bs

v+ v−1 .

Our goal is to diagonalize the full twist FT2 = FsFs. We use the eigenmaps α and

α to construct the categorified projectors P and P . To get P we take

the total complex of the following diagram:
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R

R
)

Bs

(
BsR

R
)

Bs

(
BsR

α

α

α

α

α

Applying Gaussian elimination to this complex, we find that

P ' . . . Bs Bs Bs Bs 0.
− − − −

Similarly, P is the total complex of the diagram shown below:

R
)

Bs

(
BsR

R
)

Bs

(
Bs]R

α

α

α

α

Applying Gaussian elimination yields:

P ' . . . Bs Bs Bs Bs R.
− − − −

The homotopy

Cone
(

P [−1]→ P
)
' 1

decategorifies to the idempotent decomposition

p + p = 1.
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Bw0 (−3)

Bw0 (−1)

⊕
Bw0 (−1)

Bw0 (1)

⊕
Bw0 (1)

⊕

Bs(1)

⊕
Bt(1)

Bw0 (3)

⊕
Bst(2)

⊕
Bts(3)

Bst(4)

⊕
Bts(4)

Bs(5)

⊕
Bt(5)

R(6)

R(−6)[0]

α JW

R(0)[−2]

α


0
0



R(6)[−6]

α
1

Fig. 1.4 The picture for FT3.

For the case of FT3 we get the picture shown in Figure 1.4. An ambitious reader
might try to work out what the projectors look like in this case.
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